本發明工作模態參數識別,特別涉及一種基于張量分解遞推的欠定工作模態參數識別方法及系統。
背景技術:
1、工作模態參數識別是一種通過僅依賴實測結構響應來識別系統模態參數的盲辨識方法。相比于傳統的試驗模態參數識別,工作模態參數識別具有以下優勢:僅需獲取時域振動輸出數據,無需測量輸入載荷;測量數據直接來自結構的實際運行狀態,因此識別結果更符合實際的邊界條件和工況。因此,工作模態參數識別是一種強有力的工具,特別適用于大型復雜結構的動力學特性分析。由于其使用實際工況下的數據進行模態參數辨識,識別結果更為精確,且更貼近實際情況。更重要的是,工作模態參數識別還可以實現結構的在線模態分析,實時監測結構的動態性能。正因為工作模態分析具備較強的實用性和可進行在線分析等優勢,目前已被廣泛應用于飛機、汽車、土建等大型工程結構的分析。
2、隨著更多大型和高速工程結構的涌現,涉及時變質量、剛度和阻尼的線性系統面臨的動力學挑戰也日益增多。因此,精確預測結構的振動響應變得尤為關鍵。
3、目前,盡管工作模態參數識別理論趨于成熟,但它主要基于系統線性時變的假設,這在某些情況下存在一定的局限性。對于時變系統的工作模態參數識別理論,目前仍處于初步發展階段。在現實世界中,許多工程結構在實際運行過程中,其結構參數(如質量、剛度、阻尼等)會隨著時間發生變化,從而表現出時變特性。例如,在火車過橋的模型中,由于列車本身具有質量,導致車橋耦合系統的動力學特性會隨著列車的移動不斷變化;在火箭或導彈的發射過程中,燃料消耗引起的系統質量變化也會影響其動力學特性。此外,在能源、船舶等領域,也越來越多地出現結構時變特性的情況。例如,風力發電機的轉子葉片在工作中旋轉,會使整個結構系統的動力學特性發生變化。當前工業的發展對結構動力學分析提出了新的要求,因此,研究時變結構的參數辨識問題已經變得越來越迫切。
技術實現思路
1、針對現有技術的問題,本發明的目的在于提供一種基于張量分解遞推的欠定工作模態參數識別方法及系統,通過pca(自相關優化主成分)方法將獲得的信號矩陣優化構建為三階張量,并對所構建的張量進行同時對角化遞推分解,對分解后的結果進行分析獲得相應的模態振型與固有頻率;在不破壞信號原有的聯系條件下,更好的識別時變條件下的模態振型與固有頻率,提高識別精度及識別的穩定性。
2、本發明采用如下技術方案:
3、一方面,一種基于張量分解遞推的欠定工作模態參數識別方法,包括:
4、振動響應信號獲取步驟,獲取所選傳感器測點t時刻在設定環境激勵下的采集的時變結構的振動響應信號;其中,,是傳感器個數,n(t)為時間樣本數量;
5、主成分得分計算步驟,利用主成分分析pca處理獲取的振動響應信號,計算得到主成分得分;
6、滯后期確定步驟,計算主成分得分的自相關性函數,并通過檢測自相關函數中的峰值確定滯后期;
7、三階張量構建步驟,基于t時刻的振動響應信號分解獲得的模態振型矩陣、模態響應矩陣及滯后期構建為一個維度為)的三階張量;
8、三階張量更新步驟,在t時刻的三階張量的第二維度中添加新的數據切片,構建t+1時刻的三階張量;
9、加權觀測矩陣構建步驟,基于t+1時刻的三階張量,引入動態遺忘因子構建t+1時刻的加權觀測矩陣,并對觀測矩陣進行加窗加權處理;
10、因子矩陣遞歸更新步驟,基于t時刻的加權觀測矩陣的兩個因式分解、連接矩陣對角化、奇異值跟蹤及模態響應矩陣與之間的公共塊,進行遞歸更新,獲得t+1時刻的模態振型矩陣、模態響應矩陣和信號對模態貢獻程度矩陣θ(t+1);
11、工作模態參數識別步驟,對模態振型矩陣、模態響應矩陣和信號對模態貢獻程度矩陣θ(t+1)進行分解,識別時變工作模態參數。
12、優選的,所述主成分得分計算步驟,具體包括:
13、對采集到的振動響應信號進行標準化處理,得到標準化矩陣,如下:
14、;
15、其中,為原始數據的均值,為標準差;
16、對標準化矩陣進行計算獲得協方差矩陣,對協方差矩陣進行對角化,獲得特征向量組成的矩陣,如下:
17、;
18、其中,t為矩陣的轉置,,為對角矩陣,;
19、基于標準化矩陣和特征向量組成的矩陣獲取主成分得分矩陣,如下:
20、。
21、優選的,所述滯后期確定步驟,具體包括:
22、計算主成分得分的自相關性函數,如下:
23、;
24、其中,i為選擇的一個主成分的索引,即表示主成分得分矩陣的第i列,表示t時刻第i個主成分得分的值;表示?時刻第i個主成分得分的值;表示第i個主成分得分的均值,即,n是數據的長度,l是滯后數;
25、利用自相關函數,通過峰值檢測確定周期性特征確定合適的滯后期:
26、;
27、;
28、其中,k?表示峰值索引;len()?表示自相關函數的長度,即自相關函數值的個數;表示峰值數組;表示峰值的個數。
29、優選的,基于t時刻的振動響應信號分解獲得的模態振型矩陣、模態響應矩陣及滯后期構建為一個維度為)的三階張量,表示如下:
30、;
31、其中,r是cp分解的秩;?為張量在第一個維度上的向量,即模態振型矩陣的第?r?個模態振型向量;?為張量在第二個維度上的向量,即模態響應矩陣的第?r?個模態響應向量;?為張量在第三個維度上的向量,即信號對模態貢獻程度矩陣θ(t)的第r個向量;運算符表示向量外積。
32、優選的,在t時刻的三階張量的第二維度中添加新的數據切片,構建t+1時刻的三階張量,表示如下:
33、;
34、其中,表示新的數據切片。
35、優選的,所述加權觀測矩陣構建步驟,具體包括:
36、計算當前時間點輸入的振動響應信號的數據變化率change_rate,根據數據變化率及時刻的遺忘因子動態調整時刻的遺忘因子,如下:
37、;
38、其中,表示遺忘因子的初始值;
39、使用動態調整后的遺忘因子對歷史數據進行加權,構建新的加權觀測矩陣,如下:
40、(t+1);
41、其中,是將張量沿著第一維度展開后的矩陣,維度為),以利用矩陣分解技術來提取數據中的模態信息;(t+1)是加權矩陣,由當前遺忘因子構成,如下:
42、;
43、其中,為對使用遺忘因子構建的對角矩陣;
44、對加權后的觀測矩陣進行分解得到初始的模態振型矩陣、模態響應矩陣和信號對模態貢獻程度矩陣θ(t+1),令,獲得時刻下的加載矩陣;運算符表示hadamard積。
45、優選的,所述因子矩陣遞歸更新步驟,具體包括:
46、時刻的加權觀測矩陣的兩個因式分解,如下:
47、;
48、其中,第一個分解是通過將公式(t)中的替換為其cp分解得到的結果,;第二個分解是的經濟規模svd分解,其中,和;為包含張量在第一維和第三維上的奇異向量的組合;為包含分解中的奇異值;為包含張量在第二維上的奇異向量;
49、存在一個非奇異連接矩陣,使得:
50、;
51、其中,,為輔助矩陣;連接兩個方程通過求解一組尺寸為r×r矩陣的同時對角化來找到;
52、綜合上面兩個公式,計算出、、和;為的逆矩陣;
53、對加載矩陣進行奇異值分解,如下:
54、;
55、其中,表示的第r個向量;是矩陣的左奇異向量矩陣,它的列向量是的特征向量,表示數據在行空間中的正交基向量;表示的是奇異值的對角矩陣,包含了的奇異值,反映了矩陣在各個正交方向上的強度;是矩陣的右奇異向量矩陣,它的列向量是的特征向量,表示數據在列空間中的正交基向量;更新后的因子矩陣和用于調整遞推過程中的張量分解結果;
56、基于奇異值分解結果,獲得在時刻的更新和在時刻的更新,如下:
57、將左奇異向量矩陣賦值給以更新,將分解得到的奇異值賦值給以更新;基于,獲得在時刻的更新;
58、將右奇異向量矩陣中的部分賦值給以更新;
59、在t+1時刻時,將公式轉換如下:
60、
61、利用的時移結構,將t時刻和t+1時刻連接起來,其中,表示?t+1時刻的輔助矩陣;表示t+1時刻的非奇異連接矩陣;為的逆矩陣;
62、由于時變結構和具有一個公共塊,記作;和的維度分別為n(t)×r和n(t+1)×r,因此,和的維度也是如此;在這種情況下,公共塊是本身;
63、根據設定的窗口定義以下矩陣:
64、;
65、表示時刻t下的沒有變化;
66、表示從l(t+1)?矩陣中截取前?n(t)行,構成;
67、表示提取l(t+1)的第n(t+1)行,構成;
68、由公共塊得到:
69、;
70、其中,表示遺忘因子的平方根,用于加權歷史數據;
71、得到:
72、;
73、;
74、其中,表示矩陣的偽逆;是一個單位矩陣,因此;
75、和的更新:基于公式,實現和的更新,獲得和;
76、的更新:基于公式更新,最終附加到以構建;
77、判斷相對于的變化是否小于預設的第二閾值,如果是,進一步判斷是否所有秩的因子矩陣均已更新完成,如果是,輸出更新后的、和。
78、另一方面,一種欠定時變工作模態參數識別系統,包括:
79、電機系統和支撐臺體,用于提供機械振動和結構支撐;
80、測量與分析系統,包括力和運動傳感器,用于采集時變結構的振動響應信號;
81、激勵系統,用于在時變結構上施加控制激勵以模擬真實工作環境;
82、處理單元,基于所述的基于張量分解遞推的欠定工作模態參數識別方法,分析采集到的振動響應信號,并識別時變工作模態參數。
83、與現有技術相比,本發明的有益效果如下:
84、本發明通過獲取傳感器測點的線性時變結構振動響應信號構建成張量,通過自適應張量分解技術能夠更準確地捕捉到時變結構中的模態參數,從而顯著提高識別精度;通過結合同時對角化跟蹤技術和動態選取遺忘因子技術,使得在面對復雜的工作模態時,能夠保持較高的穩定性和魯棒性;本發明的方法特別適合用于大型土木工程結構(如橋梁、建筑物、風力發電塔等)的健康監測中,結構的模態參數(如頻率、阻尼比和模態形狀)隨著時間和外部環境的變化而發生變化的類似鄰域,幫助監測結構的健康狀態,及時發現潛在的結構損傷。