一種基于MLP神經網絡的機動車尾氣排放因子估計方法與流程

            文檔序號:11156035閱讀:632來源:國知局
            一種基于MLP神經網絡的機動車尾氣排放因子估計方法與制造工藝

            本發明涉及一種機動車尾氣排放因子估計方法,屬于環境處理技術領域。



            背景技術:

            目前,我國的空氣質量問題非常嚴重,灰霾現象時有發生,特別是京津冀地區更加常見。研究表明,機動車尾氣排放是城市空氣污染的重要來源。我國亟需采取適當措施以減少機動車尾氣排放,而制定措施的前提是我們對機動車尾氣排放情況具有清楚的了解。機動車尾氣排放因子可反映機動車的排放水平,對機動車尾氣排放因子的傳統評估方法是建立影響機動車排放的參數與污染物排放之間的關系,稱之為排放因子模型。國外研究排放因子模型的時間較長,已經建立了MOBOLE、EMFAC、IVE、CMEM、COPERT等多個模型。而大部分都是通過臺架試驗的方法得到數據建立模型,由于實際道路情況復雜,這樣的模型無法真實反映在實際道路上行駛的機動車的尾氣排放。近年來,利用隧道試驗來評估排放因子的方法得到了廣泛的應用,該方法通過現場收集車流和氣象數據,測量隧道進出口污染物濃度,利用質量平衡計算出各種污染物的排放因子,從而反映出實際路況下機動車污染物的排放特性。但由此得到的往往是平均行駛速度下的排放因子或總測試時段內的平均排放因子,因此無法考察機動車行駛工況(不同瞬態車速和加/減速度)對排放特性及排放因子的影響。

            申請號201510745166.0的發明專利公布了一種基于機動車比功率的速度對車輛排放因子修正方法,根據車輛行駛速度計算機動車比功率,得到不同速度區間的比功率分布情況,并利用平均速度計算的修正系數對其進行修正。該方法在計算過程中不僅需要車輛的速度、加速度數據,還需要基本排放因子、MOVES數據庫中的排放率等數據的輸入,計算過程較復雜;另一方面,該方法只考慮行駛工況,并未將氣象條件對機動車尾氣排放的影響考慮在內。

            由于現在一些城市已經采用安裝在道路旁的機動車尾氣遙感監測設備來獲取機動車行駛時的真實尾氣排放水平,然而每個城市僅安裝了少量機動車尾氣遙感監測設備,只能對行駛在安裝設備的道路上的機動車進行監測。這些機動車尾氣遙感監測設備所獲取的部分機動車真實的尾氣排放數據為評估機動車尾氣排放因子提供了基礎。



            技術實現要素:

            本發明技術解決問題:為克服排放因子模型采用臺架試驗獲取數據評估機動車排放,與實際道路狀況存在偏差,本發明提供一種基于MLP神經網絡的機動車尾氣排放因子估計方法,可利用機動車尾氣遙感監測設備采集的實際道路上的機動車尾氣排放數據,即機動車行駛時排放的CO2、CO、HC及NO的體積濃度,以及機動車的車型、速度與加速度,以及當前溫度、濕度、壓強、風向與風速的數據,建立MLP神經網絡來估計機動車尾氣排放因子。

            本發明技術解決方案:一種基于MLP神經網絡的機動車尾氣排放因子估計方法,包括以下步驟:

            步驟1:利用機動車尾氣遙感監測設備采集的實際道路上的機動車尾氣排放數據,即機動車行駛時排放的CO2、CO、HC及NO的體積濃度,以及其他相關數據,包括:機動車的車型、速度與加速度,以及當前溫度、濕度、壓強、風向與風速;

            機動車尾氣遙感監測設備的尾氣探測器檢測機動車尾氣中污染物氣體的原理如下:位于道路一側的光源發出特定波長的紅外光和紫外光光束,道路另一側的紅外線和紫外光反光鏡又將其反射回設備的光源檢測器,當道路上有機動車通過時,機動車排放的尾氣會對紅外光和紫外光產生吸收,使得設備接收到的光強減弱,通過分析接收光光譜的變化情況便可計算出車輛行駛排放CO2、CO、HC及NO的體積濃度。同時,機動車尾氣遙感監測設備的速度加速度檢測器利用車輪通過兩條對射光路的時間間隔測量機動車的速度與加速度;機動車尾氣遙感監測設備的圖像采集設備可獲取機動車的車型,我們將機動車分為四類,即輕型汽油車、重型汽油車、輕型柴油車和重型柴油車;利用其他輔助設備可獲取當前時間、天氣、溫度、濕度、壓強、風向與風速。

            步驟2:對步驟1中采集到的機動車的尾氣排放數據進行預處理,并建立機動車尾氣CO、HC及NO的排放因子數據庫;

            根據機動車尾氣遙感監測設備采集到的機動車行駛時排放的CO2、CO、HC及NO的體積濃度數據計算機動車尾氣CO、HC及NO的排放因子,方法如下:

            其中,CO(gL-1)、HC(gL-1)和NO(gL-1)分別指機動車尾氣CO、HC及NO的排放因子,單位是gL-1;Q為機動車尾氣遙感監測設備采集到的CO與CO2體積濃度的比值;Q’為機動車尾氣遙感監測設備采集到的HC與CO2體積濃度的比值;Q”為機動車尾氣遙感監測設備采集到的NO與CO2體積濃度的比值;Mfuel為機動車燃油的摩爾質量;Dfuel為機動車燃油的密度。

            步驟3:基于步驟2所得到的機動車尾氣CO、HC及NO的排放因子數據庫,以及步驟1中采集到的其他相關數據分別建立針對于CO、HC和NO的MLP神經網絡模型,據此即可實現機動車尾氣排放因子的實時在線估計。

            CO、HC及NO的排放因子數據和速度、加速度、溫度、濕度、壓強、風向與風速數據,均通過下面的公式進行標準化:

            其中,數據記為x,該數據組內最大值和最小值分別記為xmax和xmin,x′為標準化后的數據。

            標準化之后,將所有數據先按照車型分為四個數據集,即分別針對于輕型汽油車、重型汽油車、輕型柴油車和重型柴油車的數據集。每個數據集分為訓練集、驗證集和測試集,其中驗證集用來在訓練過程中檢查MLP神經網絡的性能,當性能達到最大值或開始減小的時候訓練就可以終止,測試集可用來評估訓練出的MLP神經網絡的性能。訓練集、驗證集和測試集數據所占比例分別為50%、25%、25%。

            使用的MLP神經網絡模型的結構為:一個輸入層、一個隱藏層和一個輸出層的三層結構。MLP神經網絡模型的輸入為速度、加速度、溫度、濕度、壓強、風向與風速,輸出為CO、HC或NO的排放因子,因此輸入層神經元數目為7個,輸出層神經元數目為1個。隱藏層神經元數目采用試驗法決定。

            本發明與現有技術相比的優點在于:

            (1)本發明采用的機動車尾氣排放數據是由機動車尾氣遙感監測設備采集的實際道路上的數據,一方面,可真實反映機動車在實際工況下的排放水平,另一方面,實際道路結構復雜,便可獲得范圍較大的速度、加速度數據,同時可獲得在各種溫度、濕度、壓強、風向與風速情況下的機動車排放數據。

            (2)本發明使用人工神經網絡來建立機動車行駛工況及氣象條件和機動車尾氣排放因子之間的關系,由于行駛工況及氣象條件對排放因子的影響較為復雜,而人工神經網絡即使對輸入輸出之間的復雜非線性關系知之甚少,也可以在訓練過程中不斷接收輸入輸出數據,通過調整神經元之間的連接權值從而建立輸入輸出之間的內在關系。

            (3)本發明所使用的MLP神經網絡包含一個隱藏層,這種結構非常簡單,而且一個包含有足夠多神經元的隱藏層能表示所有非線性關系。

            附圖說明

            圖1為機動車尾氣排放因子估計方法流程圖。

            具體實施方式

            為了使本發明的目的、技術方案及優點更加清楚明白,以下對本發明進行進一步詳細說明。

            如圖1所示,本發明具體實施過程如下:

            步驟1:利用機動車尾氣遙感監測設備采集的實際道路上的機動車尾氣排放數據,即機動車行駛時排放的CO2、CO、HC及NO的體積濃度,以及其他相關數據,包括:機動車的車型、速度與加速度,以及當前溫度、濕度、壓強、風向與風速;

            機動車尾氣遙感監測設備的尾氣探測器檢測機動車尾氣中污染物氣體的原理如下:位于道路一側的光源發出特定波長的紅外光和紫外光光束,道路另一側的紅外線和紫外光反光鏡又將其反射回設備的光源檢測器,當道路上有機動車通過時,機動車排放的尾氣會對紅外光和紫外光產生吸收,使得設備接收到的光強減弱,通過分析接收光光譜的變化情況便可計算出車輛行駛排放CO2、CO、HC及NO的體積濃度。同時,機動車尾氣遙感監測設備的速度加速度檢測器利用車輪通過兩條對射光路的時間間隔測量機動車的速度與加速度;機動車尾氣遙感監測設備的圖像采集設備可獲取機動車的車型,我們將機動車分為四類,即輕型汽油車、重型汽油車、輕型柴油車和重型柴油車;利用其他輔助設備可獲取當前時間、天氣、溫度、濕度、壓強、風向與風速。

            步驟2:對步驟1中采集到的機動車的尾氣排放數據進行預處理,并建立機動車尾氣CO、HC及NO的排放因子數據庫;

            根據機動車尾氣遙感監測設備采集到的機動車行駛時排放的CO2、CO、HC及NO的體積濃度數據計算機動車尾氣CO、HC及NO的排放因子,方法如下:

            其中,CO(gL-1)、HC(gL-1)和NO(gL-1)分別指機動車尾氣CO、HC及NO的排放因子,單位是gL-1;Q為機動車尾氣遙感監測設備采集到的CO與CO2體積濃度的比值;Q’為機動車尾氣遙感監測設備采集到的HC與CO2體積濃度的比值;Q”為機動車尾氣遙感監測設備采集到的NO與CO2體積濃度的比值;Mfuel為機動車燃油的摩爾質量;Dfuel為機動車燃油的密度。

            在上式中帶入汽油的摩爾質量和密度的相應數據,得到下面的針對汽油車的排放因子計算公式:

            步驟3:基于步驟2所得到的機動車尾氣CO、HC及NO的排放因子數據庫,以及步驟1中采集到的其他相關數據分別建立針對于CO、HC和NO的MLP神經網絡模型,據此即可實現機動車尾氣排放因子的實時在線估計。

            CO、HC及NO的排放因子數據和速度、加速度、溫度、濕度、壓強、風向與風速數據,均通過下面的公式進行標準化:

            其中,數據記為x,該數據組內最大值和最小值分別記為xmax和xmin,x′為標準化后的數據。

            標準化之后,將所有數據先按照車型分為四個數據集,即分別針對于輕型汽油車、重型汽油車、輕型柴油車和重型柴油車的數據集。每個數據集分為訓練集、驗證集和測試集,其中驗證集用來在訓練過程中檢查MLP神經網絡的性能,當性能達到最大值或開始減小的時候訓練就可以終止,測試集可用來評估訓練出的MLP神經網絡的性能。訓練集、驗證集和測試集數據所占比例分別為50%、25%、25%。

            使用的MLP神經網絡模型的結構為:一個輸入層、一個隱藏層和一個輸出層的三層結構。MLP神經網絡模型的輸入為速度、加速度、溫度、濕度、壓強、風向與風速,輸出為CO、HC或NO的排放因子,因此輸入層神經元數目為7個,輸出層神經元數目為1個。

            隱藏層第i個神經元的輸出yi具有以下形式:

            其中,xk是輸入層第k個神經元的輸出;N為輸入層神經元數目;wk,i是輸入層第k個神經元與隱藏層第i個神經元之間的連接權重,k=0,1,2,…N;bi為第i個偏離常數;f表示激活函數。

            將標準化的速度、加速度、溫度、濕度、壓強、風向和風速數據作為MLP神經網絡模型的輸入,CO、HC或NO的排放因子作為輸出。隱藏層神經元的個數可以由實驗確定;示例性的,隱藏層神經元個數分別取2~25,建立相應的MLP神經網絡模型,基于訓練集對模型進行訓練,基于驗證集和測試集分別對訓練所得一系列模型進行對比分析,使得模型性能最佳的隱藏層神經元數目即為最終確定的MLP神經網絡模型的隱藏層神經元數目。在本發明實施例中,經過性能比較和反復試驗,所建立的針對輕型汽油車排放的CO、HC和NO的排放因子的三個MLP神經網絡模型中隱藏層神經元數目分別為13、11和16個。

            根據本發明所建立的針對不同車型的CO、HC和NO排放因子的MLP神經網絡模型,對于無法實時監測尾氣排放狀況的機動車,也可根據其行駛工況和氣象條件實現尾氣排放因子的實時在線估計。

            提供以上實施例僅僅是為了描述本發明的目的,而并非要限制本發明的范圍。本發明的范圍由所附權利要求限定。不脫離本發明的精神和原理而做出的各種等同替換和修改,均應涵蓋在本發明的范圍之內。

            當前第1頁1 2 3 
            網友詢問留言 已有0條留言
            • 還沒有人留言評論。精彩留言會獲得點贊!
            1
            婷婷六月激情在线综合激情,亚洲国产大片,久久中文字幕综合婷婷,精品久久久久久中文字幕,亚洲一区二区三区高清不卡,99国产精品热久久久久久夜夜嗨 ,欧美日韩亚洲综合在线一区二区,99国产精品电影,伊人精品线视天天综合,精品伊人久久久大香线蕉欧美
            亚洲精品1区 国产成人一级 91精品国产欧美一区二区 亚洲精品乱码久久久久久下载 国产精品久久久久久久伊一 九色国产 国产精品九九视频 伊人久久成人爱综合网 欧美日韩亚洲区久久综合 欧美日本一道免费一区三区 夜夜爽一区二区三区精品 欧美日韩高清一区二区三区 国产成人av在线 国产精品对白交换绿帽视频 国产视频亚洲 国产在线欧美精品 国产精品综合网 国产日韩精品欧美一区色 国产日韩精品欧美一区喷 欧美日韩在线观看区一二 国产区精品 欧美视频日韩视频 中文字幕天天躁日日躁狠狠躁97 视频一二三区 欧美高清在线精品一区二区不卡 国产精品揄拍一区二区久久 99久久综合狠狠综合久久aⅴ 亚洲乱码视频在线观看 日韩在线第二页 亚洲精品无码专区在线播放 成人亚洲网站www在线观看 欧美三级一区二区 99久久精品免费看国产高清 91麻豆国产在线观看 最新日韩欧美不卡一二三区 成人在线观看不卡 日韩国产在线 在线亚洲精品 亚洲午夜久久久久中文字幕 国产精品成人久久久久久久 精品国产一区二区在线观看 欧美精品国产一区二区三区 中文在线播放 亚洲第一页在线视频 国产午夜精品福利久久 九色国产 精品国产九九 国产永久视频 久久精品人人做人人综合试看 国产一区二区三区免费观看 亚洲精品国产电影 9999热视频 国产精品资源在线 麻豆久久婷婷国产综合五月 国产精品免费一级在线观看 亚洲国产一区二区三区青草影视 中文在线播放 国产成人综合在线 国产在线观看色 国产亚洲三级 国产片一区二区三区 久久99精品久久久久久牛牛影视 亚洲欧美日韩国产 四虎永久免费网站 国产一毛片 国产精品视频在 九九热在线精品 99精品福利视频 色婷婷色99国产综合精品 97成人精品视频在线播放 精品久久久久久中文字幕 亚洲欧美一区二区三区孕妇 亚洲欧美成人网 日韩高清在线二区 国产尤物在线观看 在线不卡一区二区 91网站在线看 韩国精品福利一区二区 欧美日韩国产成人精品 99热精品久久 国产精品免费视频一区 高清视频一区 精品九九久久 欧美日韩在线观看免费 91欧美激情一区二区三区成人 99福利视频 亚洲国产精品91 久热国产在线 精品久久久久久中文字幕女 国产精品久久久久久久久99热 成人自拍视频网 国产精品视频久久久久久 久久影院国产 国产玖玖在线观看 99精品在线免费 亚洲欧美一区二区三区导航 久久久久久久综合 国产欧美日韩精品高清二区综合区 国产精品视频自拍 亚洲一级片免费 久久久久久九九 国产欧美自拍视频 视频一区二区在线观看 欧美日韩一区二区三区久久 中文在线亚洲 伊人热人久久中文字幕 日韩欧美亚洲国产一区二区三区 欧美亚洲国产成人高清在线 欧美日韩国产码高清综合人成 国产性大片免费播放网站 亚洲午夜综合网 91精品久久一区二区三区 国产无套在线播放 国产精品视频网站 国产成人亚洲精品老王 91在线网站 国产视频97 欧美黑人欧美精品刺激 国产一区二区三区免费在线视频 久久久国产精品免费看 99re6久精品国产首页 久久精品91 国产成人一级 国产成人精品曰本亚洲 日本福利在线观看 伊人成综合网 久久综合一本 国产综合久久久久久 久久精品成人免费看 久久福利 91精品国产91久久久久久麻豆 亚洲精品成人在线 亚洲伊人久久精品 欧美日本二区 国产永久视频 国产一区二 一区二区福利 国产一毛片 亚洲精品1区 毛片一区二区三区 伊人久久大香线蕉综合影 国产欧美在线观看一区 亚洲国产欧洲综合997久久 国产一区二区免费视频 国产91精品对白露脸全集观看 久久亚洲国产伦理 欧美成人伊人久久综合网 亚洲性久久久影院 久久99国产精一区二区三区! 91精品国产欧美一区二区 欧美日韩亚洲区久久综合 日韩精品一二三区 久久久夜色精品国产噜噜 国产在线精品福利91香蕉 久久久久久久亚洲精品 97se色综合一区二区二区 91国语精品自产拍在线观看性色 91久久国产综合精品女同我 日韩中文字幕a 国产成人亚洲日本精品 久久国产精品-国产精品 久久国产经典视频 久久国产精品伦理 亚洲第一页在线视频 国产精品久久久久三级 日韩毛片网 久久免费高清视频 麻豆国产在线观看一区二区 91麻豆国产福利在线观看 国产成人精品男人的天堂538 一区二区三区中文字幕 免费在线视频一区 欧美日韩国产成人精品 国产综合网站 国产资源免费观看 亚洲精品亚洲人成在线播放 精品久久久久久中文字幕专区 亚洲人成人毛片无遮挡 国产一起色一起爱 国产香蕉精品视频在 九九热免费观看 日韩亚洲欧美一区 九九热精品在线观看 精品久久久久久中文字幕专区 亚洲欧美自拍偷拍 国产精品每日更新 久久久久国产一级毛片高清板 久久天天躁狠狠躁夜夜中文字幕 久久精品片 日韩在线毛片 国产成人精品本亚洲 国产成人精品一区二区三区 九九热在线观看 国产r级在线观看 国产欧美日韩精品高清二区综合区 韩国电影一区二区 国产精品毛片va一区二区三区 五月婷婷伊人网 久久一区二区三区免费 一本色道久久综合狠狠躁篇 亚洲综合色站 国产尤物在线观看 亚洲一区亚洲二区 免费在线视频一区 欧洲精品视频在线观看 日韩中文字幕a 中文字幕日本在线mv视频精品 91精品在线免费视频 精品国产免费人成在线观看 精品a级片 中文字幕日本在线mv视频精品 日韩在线精品视频 婷婷丁香色 91精品国产高清久久久久 国产成人精品日本亚洲直接 五月综合视频 欧美日韩在线亚洲国产人 精液呈暗黄色 亚洲乱码一区 久久精品中文字幕不卡一二区 亚洲天堂精品在线 激情婷婷综合 国产免费久久精品久久久 国产精品亚洲二区在线 久久免费播放视频 五月婷婷丁香综合 在线亚洲欧美日韩 久久免费精品高清麻豆 精品久久久久久中文字幕 亚洲一区网站 国产精品福利社 日韩中文字幕免费 亚洲综合丝袜 91精品在线播放 国产精品18 亚洲日日夜夜 伊人久久大香线蕉综合影 亚洲精品中文字幕乱码影院 亚洲一区二区黄色 亚洲第一页在线视频 一区二区在线观看视频 国产成人福利精品视频 亚洲高清二区 国内成人免费视频 精品亚洲性xxx久久久 国产精品合集一区二区三区 97av免费视频 国产一起色一起爱 国产区久久 国产资源免费观看 99精品视频免费 国产成人一级 国产精品九九免费视频 欧美91精品久久久久网免费 99热国产免费 久久精品色 98精品国产综合久久 久久精品播放 中文字幕视频免费 国产欧美日韩一区二区三区在线 精品久久蜜桃 国产小视频精品 一本色道久久综合狠狠躁篇 91在线免费观看 亚洲精品区 伊人成综合网 伊人热人久久中文字幕 伊人黄色片 99国产精品热久久久久久夜夜嗨 久久免费精品视频 亚洲一区二区三区高清不卡 久久久久国产一级毛片高清板 国产片一区二区三区 久久狠狠干 99久久婷婷国产综合精品电影 国产99区 国产精品成人久久久久 久久狠狠干 青青国产在线观看 亚洲高清国产拍精品影院 国产精品一区二区av 九九热在线免费视频 伊人久久国产 国产精品久久久久久久久久一区 在线观看免费视频一区 国产精品自在在线午夜区app 国产精品综合色区在线观看 国产毛片久久久久久国产毛片 97国产免费全部免费观看 国产精品每日更新 国产尤物视频在线 九九视频这里只有精品99 一本一道久久a久久精品综合 久久综合给会久久狠狠狠 国产成人精品男人的天堂538 欧美一区二区高清 毛片一区二区三区 国产欧美日韩在线观看一区二区三区 在线国产二区 欧美不卡网 91在线精品中文字幕 在线国产福利 国内精品91久久久久 91亚洲福利 日韩欧美国产中文字幕 91久久精品国产性色也91久久 亚洲性久久久影院 欧美精品1区 国产热re99久久6国产精品 九九热免费观看 国产精品欧美日韩 久久久久国产一级毛片高清板 久久国产经典视频 日韩欧美亚洲国产一区二区三区 欧美亚洲综合另类在线观看 国产精品自在在线午夜区app 97中文字幕在线观看 视频一二三区 精品国产一区在线观看 国产欧美日韩在线一区二区不卡 欧美一区二三区 伊人成人在线观看 国内精品91久久久久 97在线亚洲 国产在线不卡一区 久久久全免费全集一级全黄片 国产精品v欧美精品∨日韩 亚洲毛片网站 在线不卡一区二区 99re热在线视频 久久激情网 国产毛片一区二区三区精品 久久亚洲综合色 中文字幕视频免费 国产视频亚洲 婷婷伊人久久 国产一区二区免费播放 久久99国产精品成人欧美 99国产在线视频 国产成人免费视频精品一区二区 国产不卡一区二区三区免费视 国产码欧美日韩高清综合一区 久久精品国产主播一区二区 国产一区电影 久久精品国产夜色 国产精品国产三级国产 日韩一区二区三区在线 久久97久久97精品免视看 久久国产免费一区二区三区 伊人久久大香线蕉综合电影网 99re6久精品国产首页 久久激情网 亚洲成人高清在线 国产精品网址 国产成人精品男人的天堂538 香蕉国产综合久久猫咪 国产专区中文字幕 91麻豆精品国产高清在线 久久国产经典视频 国产精品成人va在线观看 国产精品爱啪在线线免费观看 日本精品久久久久久久久免费 亚洲综合一区二区三区 久久五月网 精品国产网红福利在线观看 久久综合亚洲伊人色 亚洲国产精品久久久久久网站 在线日韩国产 99国产精品热久久久久久夜夜嗨 国产综合精品在线 国产区福利 精品亚洲综合久久中文字幕 国产制服丝袜在线 毛片在线播放网站 在线观看免费视频一区 国产精品久久久精品三级 亚洲国产电影在线观看 最新日韩欧美不卡一二三区 狠狠综合久久综合鬼色 日本精品1在线区 国产日韩一区二区三区在线播放 欧美日韩精品在线播放 亚洲欧美日韩国产一区二区三区精品 久久综合久久网 婷婷六月激情在线综合激情 亚洲乱码一区 国产专区91 97av视频在线观看 精品久久久久久中文字幕 久久五月视频 国产成人福利精品视频 国产精品网址 中文字幕视频在线 精品一区二区三区免费视频 伊人手机在线视频 亚洲精品中文字幕乱码 国产在线视频www色 色噜噜国产精品视频一区二区 精品亚洲成a人在线观看 国产香蕉尹人综合在线 成人免费一区二区三区在线观看 国产不卡一区二区三区免费视 欧美精品久久天天躁 国产专区中文字幕 久久精品国产免费中文 久久精品国产免费一区 久久无码精品一区二区三区 国产欧美另类久久久精品免费 欧美精品久久天天躁 亚洲精品在线视频 国产视频91在线 91精品福利一区二区三区野战 日韩中文字幕免费 国产精品99一区二区三区 欧美成人高清性色生活 国产精品系列在线观看 亚洲国产福利精品一区二区 国产成人在线小视频 国产精品久久久久免费 99re热在线视频 久久久久久久综合 一区二区国产在线播放 成人国产在线视频 亚洲精品乱码久久久久 欧美日韩一区二区综合 精品久久久久免费极品大片 中文字幕视频二区 激情粉嫩精品国产尤物 国产成人精品一区二区视频 久久精品中文字幕首页 亚洲高清在线 国产精品亚洲一区二区三区 伊人久久艹 中文在线亚洲 国产精品一区二区在线播放 国产精品九九免费视频 亚洲二区在线播放 亚洲狠狠婷婷综合久久久久网站 亚洲欧美日韩网站 日韩成人精品 亚洲国产一区二区三区青草影视 91精品国产福利在线观看 国产精品久久久久久久久99热 国产一区二区精品尤物 久碰香蕉精品视频在线观看 亚洲日日夜夜 在线不卡一区二区 国产午夜亚洲精品 九九热在线视频观看这里只有精品 伊人手机在线视频 91免费国产精品 日韩欧美中字 91精品国产91久久久久 国产全黄三级播放 视频一区二区三区免费观看 国产开裆丝袜高跟在线观看 国产成人欧美 激情综合丝袜美女一区二区 国产成人亚洲综合无 欧美精品一区二区三区免费观看 欧美亚洲国产日韩 日韩亚州 国产欧美日韩精品高清二区综合区 亚洲午夜国产片在线观看 精品久久久久久中文字幕 欧美精品1区 久久伊人久久亚洲综合 亚洲欧美日韩精品 国产成人精品久久亚洲高清不卡 久久福利影视 国产精品99精品久久免费 久久久久免费精品视频 国产日产亚洲精品 亚洲国产午夜电影在线入口 精品无码一区在线观看 午夜国产精品视频 亚洲一级片免费 伊人久久大香线蕉综合影 国产精品久久影院 久碰香蕉精品视频在线观看 www.欧美精品 在线小视频国产 亚洲国产天堂久久综合图区 欧美一区二区三区不卡 日韩美女福利视频 九九精品免视频国产成人 不卡国产00高中生在线视频 亚洲第一页在线视频 欧美日韩在线播放成人 99re视频这里只有精品 国产精品91在线 精品乱码一区二区三区在线 国产区久久 91麻豆精品国产自产在线观看一区 日韩精品成人在线 九九热在线观看 国产精品久久不卡日韩美女 欧美一区二区三区综合色视频 欧美精品免费一区欧美久久优播 国产精品网址 国产专区中文字幕 国产精品欧美亚洲韩国日本久久 日韩美香港a一级毛片 久久精品123 欧美一区二区三区免费看 99r在线视频 亚洲精品国产字幕久久vr 国产综合激情在线亚洲第一页 91免费国产精品 日韩免费小视频 亚洲国产精品综合一区在线 国产亚洲第一伦理第一区 在线亚洲精品 国产精品一区二区制服丝袜 国产在线成人精品 九九精品免视频国产成人 亚洲国产网 欧美日韩亚洲一区二区三区在线观看 在线亚洲精品 欧美一区二区三区高清视频 国产成人精品男人的天堂538 欧美日韩在线观看区一二 亚洲欧美一区二区久久 久久精品中文字幕首页 日本高清www午夜视频 久久精品国产免费 久久999精品 亚洲国产精品欧美综合 88国产精品视频一区二区三区 91久久偷偷做嫩草影院免费看 国产精品夜色视频一区二区 欧美日韩导航 国产成人啪精品午夜在线播放 一区二区视频在线免费观看 99久久精品国产自免费 精液呈暗黄色 久久99国产精品 日本精品久久久久久久久免费 精品国产97在线观看 99re视频这里只有精品 国产视频91在线 999av视频 亚洲美女视频一区二区三区 久久97久久97精品免视看 亚洲国产成人久久三区 99久久亚洲国产高清观看 日韩毛片在线视频 综合激情在线 91福利一区二区在线观看 一区二区视频在线免费观看 激情粉嫩精品国产尤物 国产成人精品曰本亚洲78 国产成人精品本亚洲 国产精品成人免费视频 国产成人啪精品视频免费软件 久久精品国产亚洲妲己影院 国产精品成人久久久久久久 久久大香线蕉综合爱 欧美一区二区三区高清视频 99热国产免费 在线观看欧美国产 91精品视频在线播放 国产精品福利社 欧美精品一区二区三区免费观看 国产一区二区免费视频 国产午夜精品一区二区 精品视频在线观看97 91精品福利久久久 国产一区福利 国产综合激情在线亚洲第一页 国产精品久久久久久久久久久不卡 九色国产 在线日韩国产 黄网在线观看 亚洲一区小说区中文字幕 中文字幕丝袜 日本二区在线观看 日本国产一区在线观看 欧美日韩一区二区三区久久 欧美精品亚洲精品日韩专 国产日产亚洲精品 久久综合九色综合欧美播 亚洲国产欧美无圣光一区 欧美视频区 亚洲乱码视频在线观看 久久无码精品一区二区三区 九九热精品免费视频 久久99精品久久久久久牛牛影视 国产精品成久久久久三级 国产一区福利 午夜国产精品视频 日本二区在线观看 99久久网站 国产亚洲天堂 精品国产一区二区三区不卡 亚洲国产日韩在线一区 国产成人综合在线观看网站 久久免费高清视频 欧美在线导航 午夜精品久久久久久99热7777 欧美久久综合网 国产小视频精品 国产尤物在线观看 亚洲国产精品综合一区在线 欧美一区二区三区不卡视频 欧美黑人欧美精品刺激 日本福利在线观看 久久国产偷 国产手机精品一区二区 国产热re99久久6国产精品 国产高清啪啪 欧美亚洲国产成人高清在线 国产在线第三页 亚洲综合一区二区三区 99r在线视频 99精品久久久久久久婷婷 国产精品乱码免费一区二区 国产在线精品福利91香蕉 国产尤物视频在线 五月婷婷亚洲 中文字幕久久综合伊人 亚洲精品一级毛片 99国产精品电影 在线视频第一页 久久99国产精品成人欧美 国产白白视频在线观看2 成人精品一区二区www 亚洲成人网在线观看 麻豆91在线视频 色综合合久久天天综合绕视看 久久精品国产免费高清 国产不卡一区二区三区免费视 欧美国产中文 99精品欧美 九九在线精品 国产中文字幕在线免费观看 国产一区中文字幕在线观看 国产成人一级 国产精品一区二区制服丝袜 国产一起色一起爱 亚洲精品成人在线 亚洲欧美精品在线 国产欧美自拍视频 99精品久久久久久久婷婷 久99视频 国产热re99久久6国产精品 视频一区亚洲 国产精品视频分类 国产精品成在线观看 99re6久精品国产首页 亚洲在成人网在线看 亚洲国产日韩在线一区 久久国产三级 日韩国产欧美 欧美在线一区二区三区 国产精品美女一级在线观看 成人午夜免费福利视频 亚洲天堂精品在线 91精品国产手机 欧美日韩视频在线播放 狠狠综合久久综合鬼色 九一色视频 青青视频国产 亚洲欧美自拍一区 中文字幕天天躁日日躁狠狠躁97 日韩免费大片 996热视频 伊人成综合网 亚洲天堂欧美 日韩精品亚洲人成在线观看 久久综合给会久久狠狠狠 日韩精品亚洲人成在线观看 日韩国产欧美 亚洲成aⅴ人片在线影院八 亚洲精品1区 99久久精品免费 国产精品高清在线观看 国产精品久久久免费视频 在线亚洲欧美日韩 91在线看视频 国产精品96久久久久久久 欧美日韩国产成人精品 91在线亚洲 热久久亚洲 国产精品美女免费视频观看 日韩在线毛片 亚洲永久免费视频 九九免费在线视频 亚洲一区网站 日本高清二区视频久二区 精品国产美女福利在线 伊人久久艹 国产精品久久久久三级 欧美成人精品第一区二区三区 99久久精品国产自免费 在线观看日韩一区 国产中文字幕一区 成人免费午夜视频 欧美日韩另类在线 久久99国产精品成人欧美 色婷婷中文网 久久天天躁夜夜躁狠狠躁2020 欧美成人伊人久久综合网 国产精品福利资源在线 国产伦精品一区二区三区高清 国产精品亚洲综合色区韩国 亚洲一区欧美日韩 色综合视频 国语自产精品视频在线区 国产高清a 成人国内精品久久久久影 国产在线精品香蕉综合网一区 国产不卡在线看 国产成人精品精品欧美 国产欧美日韩综合精品一区二区三区 韩国电影一区二区 国产在线视频www色 91中文字幕在线一区 国产人成午夜免视频网站 亚洲综合一区二区三区 色综合视频一区二区观看 久久五月网 九九热精品在线观看 国产一区二区三区国产精品 99久热re在线精品996热视频 亚洲国产网 在线视频亚洲一区 日韩字幕一中文在线综合 国产高清一级毛片在线不卡 精品国产色在线 国产高清视频一区二区 精品日本久久久久久久久久 亚洲国产午夜精品乱码 成人免费国产gav视频在线 日韩欧美一区二区在线观看 欧美曰批人成在线观看 韩国电影一区二区 99re这里只有精品6 日韩精品一区二区三区视频 99re6久精品国产首页 亚洲欧美一区二区三区导航 欧美色图一区二区三区 午夜精品视频在线观看 欧美激情在线观看一区二区三区 亚洲热在线 成人国产精品一区二区网站 亚洲一级毛片在线播放 亚洲一区小说区中文字幕 亚洲午夜久久久久影院 国产自产v一区二区三区c 国产精品视频免费 久久调教视频 国产成人91激情在线播放 国产精品欧美亚洲韩国日本久久 久久亚洲日本不卡一区二区 91中文字幕网 成人国产在线视频 国产视频91在线 欧美成人精品第一区二区三区 国产精品福利在线 久久综合九色综合精品 欧美一区二区三区精品 久久国产综合尤物免费观看 久久99青青久久99久久 日韩精品免费 久久国产精品999 91亚洲视频在线观看 国产精品igao视频 色综合区 在线亚洲欧国产精品专区 国产一区二区三区在线观看视频 亚洲精品成人在线 一区二区国产在线播放 中文在线亚洲 亚洲精品第一国产综合野 国产一区二区精品久久 一区二区三区四区精品视频 99热精品久久 中文字幕视频二区 国产成人精品男人的天堂538 99精品影视 美女福利视频一区二区 久久午夜夜伦伦鲁鲁片 综合久久久久久久综合网 国产精品国产欧美综合一区 国产99视频在线观看 国产亚洲女在线精品 婷婷影院在线综合免费视频 国产亚洲3p一区二区三区 91成人爽a毛片一区二区 亚洲一区二区高清 国产欧美亚洲精品第二区首页 欧美日韩导航 亚洲高清二区 欧美激情观看一区二区久久 日韩毛片在线播放 亚洲欧美日韩高清中文在线 亚洲日本在线播放 国产精品一区二区制服丝袜 精品国产一区二区三区不卡 国产不卡在线看 国产欧美网站 四虎永久在线观看视频精品 国产黄色片在线观看 夜夜综合 一本色道久久综合狠狠躁篇 欧美亚洲综合另类在线观看 国产91在线看 伊人久久国产 欧美一区二区在线观看免费网站 国产精品久久久久三级 久久福利 日韩中文字幕a 亚洲午夜久久久久影院 91在线高清视频 国产亚洲一区二区三区啪 久久人精品 国产精品亚洲午夜一区二区三区 综合久久久久久 久久伊人一区二区三区四区 国产综合久久久久久 日韩一区精品视频在线看 国产精品日韩欧美制服 日本精品1在线区 99re视频 无码av免费一区二区三区试看 国产视频1区 日韩欧美中文字幕一区 日本高清中文字幕一区二区三区a 亚洲国产欧美无圣光一区 国产在线视频一区二区三区 欧美国产第一页 在线亚洲欧美日韩 日韩中文字幕第一页 在线不卡一区二区 伊人久久青青 国产精品一区二区在线播放 www.五月婷婷 麻豆久久婷婷国产综合五月 亚洲精品区 久久国产欧美另类久久久 99在线视频免费 伊人久久中文字幕久久cm 久久精品成人免费看 久久这里只有精品首页 88国产精品视频一区二区三区 中文字幕日本在线mv视频精品 国产在线精品成人一区二区三区 伊人精品线视天天综合 亚洲一区二区黄色 国产尤物视频在线 亚洲精品99久久久久中文字幕 国产一区二区三区免费观看 伊人久久大香线蕉综合电影网 国产成人精品区在线观看 日本精品一区二区三区视频 日韩高清在线二区 久久免费播放视频 一区二区成人国产精品 国产精品免费精品自在线观看 亚洲精品视频二区 麻豆国产精品有码在线观看 精品日本一区二区 亚洲欧洲久久 久久中文字幕综合婷婷 中文字幕视频在线 国产成人精品综合在线观看 91精品国产91久久久久福利 精液呈暗黄色 香蕉国产综合久久猫咪 国产专区精品 亚洲精品无码不卡 国产永久视频 亚洲成a人片在线播放观看国产 一区二区国产在线播放 亚洲一区二区黄色 欧美日韩在线观看视频 亚洲精品另类 久久国产综合尤物免费观看 国产一区二区三区国产精品 高清视频一区 国产精品igao视频 国产精品资源在线 久久综合精品国产一区二区三区 www.五月婷婷 精品色综合 99热国产免费 麻豆福利影院 亚洲伊人久久大香线蕉苏妲己 久久电影院久久国产 久久精品伊人 在线日韩理论午夜中文电影 亚洲国产欧洲综合997久久 伊人国产精品 久草国产精品 欧美一区精品二区三区 亚洲成人高清在线 91免费国产精品 日韩精品福利在线 国产一线在线观看 国产不卡在线看 久久99青青久久99久久 亚洲精品亚洲人成在线播放 99久久免费看国产精品 国产日本在线观看 青草国产在线视频 麻豆久久婷婷国产综合五月 国产中文字幕一区 91久久精品国产性色也91久久 国产一区a 国产欧美日韩成人 国产亚洲女在线精品 一区二区美女 中文字幕在线2021一区 在线小视频国产 久久这里只有精品首页 国产在线第三页 欧美日韩中文字幕 在线亚洲+欧美+日本专区 精品国产一区二区三区不卡 久久这里精品 欧美在线va在线播放 精液呈暗黄色 91精品国产手机 91在线免费播放 欧美视频亚洲色图 欧美国产日韩精品 日韩高清不卡在线 精品视频免费观看 欧美日韩一区二区三区四区 国产欧美亚洲精品第二区首页 亚洲韩精品欧美一区二区三区 国产精品视频免费 在线精品小视频 久久午夜夜伦伦鲁鲁片 国产无套在线播放 久热这里只精品99re8久 欧美久久久久 久久香蕉国产线看观看精品蕉 国产成人精品男人的天堂538 亚洲人成网站色7799在线观看 日韩在线第二页 一本色道久久综合狠狠躁篇 国产一区二区三区不卡在线观看 亚洲乱码在线 在线观看欧美国产 久久福利青草精品资源站免费 国产玖玖在线观看 在线亚洲精品 亚洲成aⅴ人在线观看 精品91在线 欧美一区二三区 日韩中文字幕视频在线 日本成人一区二区 日韩免费专区 国内精品在线观看视频 久久国产综合尤物免费观看 国产精品系列在线观看 一本一道久久a久久精品综合 亚洲免费播放 久久精品国产免费 久久人精品 亚洲毛片网站 亚洲成a人一区二区三区 韩国福利一区二区三区高清视频 亚洲精品天堂在线 一区二区三区中文字幕 亚洲国产色婷婷精品综合在线观看 亚洲国产成人久久笫一页 999国产视频 国产精品香港三级在线电影 欧美日韩一区二区三区四区 日韩国产欧美 国产精品99一区二区三区 午夜国产精品理论片久久影院 亚洲精品中文字幕麻豆 亚洲国产高清视频 久久免费手机视频 日韩a在线观看 五月婷婷亚洲 亚洲精品中文字幕麻豆 中文字幕丝袜 www国产精品 亚洲天堂精品在线 亚洲乱码一区 国产日韩欧美三级 久久999精品 伊人热人久久中文字幕 久热国产在线视频 国产欧美日韩在线观看一区二区三区 国产一二三区在线 日韩国产欧美 91精品国产91久久久久 亚洲一区小说区中文字幕 精品一区二区免费视频 国产精品视频免费 国产精品亚洲综合色区韩国 亚洲国产精品成人午夜在线观看 欧美国产日韩精品 中文字幕精品一区二区精品