本發(fā)明屬于生物
技術(shù)領(lǐng)域:
:,具體涉及一種cas9核酸酶g915f及用途。
背景技術(shù):
::自從人類基因組計(jì)劃(humangenomeproject)和dna元件百科全書(shū)(encyclopediaofdnaelements)項(xiàng)目的完成,科學(xué)家們分析和鑒定了大量的基因組中的基因和dna調(diào)控元件[1,2]。在基因表達(dá)調(diào)控中起重要作用的dna調(diào)控元件包括啟動(dòng)子、增強(qiáng)子、沉默子和絕緣子等。然而,多數(shù)調(diào)控元件的功能并沒(méi)有得到實(shí)驗(yàn)的驗(yàn)證和闡明[2-8]。探索基因和dna調(diào)控元件的功能,可以通過(guò)遺傳學(xué)dna片段編輯來(lái)進(jìn)行研究。早期的基因編輯和基因功能修飾是通過(guò)基因轉(zhuǎn)座和轉(zhuǎn)基因?qū)崿F(xiàn)的[9-14]。伴隨測(cè)序技術(shù)的發(fā)展,反向遺傳學(xué)被應(yīng)用于對(duì)基因組進(jìn)行特定的突變[15,16]。特別是依賴于同源重組的基因打靶小鼠迅速地被應(yīng)用到科學(xué)研究中[15,17,18]。此外,在小鼠和斑馬魚(yú)中dna片段的反轉(zhuǎn)和重復(fù)被應(yīng)用于去研究特定的基因組結(jié)構(gòu)變化[19-24]。近幾年,源于細(xì)菌和古菌的ⅱ型成簇規(guī)律間隔短回文重復(fù)系統(tǒng)[clusteredregularlyinterspacedshortpalindromicrepeats(crispr)/crispr-associatednuclease9(cas9),crispr/cas9]是新興基因組編輯技術(shù)[25-27],由于它設(shè)計(jì)簡(jiǎn)單和操作方便,迅速地被應(yīng)用到真核基因組編輯。我們利用crispr/cas9系統(tǒng)在人細(xì)胞系和小鼠中實(shí)現(xiàn)了dna片段遺傳編輯(刪除、反轉(zhuǎn)和重復(fù))[28]。通過(guò)cas9和兩個(gè)sgrnas在基因組中進(jìn)行兩個(gè)位點(diǎn)靶向斷裂后在ctip等蛋白參與的修復(fù)系統(tǒng)作用下可以實(shí)現(xiàn)dna片段的刪除、反轉(zhuǎn)(倒位)、重復(fù)、易位和插入(如果提供供體)等[29-32]。通過(guò)對(duì)dna片段編輯的遺傳操作,能夠用來(lái)研究原鈣粘蛋白和珠蛋白的基因表達(dá)調(diào)控和三維基因組結(jié)構(gòu)[28,31-33]。目前可以通過(guò)crispr/cas9系統(tǒng)實(shí)現(xiàn)dna片段的編輯,但是對(duì)于深入研究特定dna區(qū)段的精準(zhǔn)功能,有效地實(shí)現(xiàn)dna片段的精準(zhǔn)遺傳編輯的cas9核酸酶還有待發(fā)現(xiàn)。技術(shù)實(shí)現(xiàn)要素:為了克服現(xiàn)有技術(shù)中所存在的問(wèn)題,本發(fā)明的目的在于提供一種cas9核酸酶及用途。為了實(shí)現(xiàn)上述目的以及其他相關(guān)目的,本發(fā)明采用如下技術(shù)方案:本發(fā)明的第一方面,提供一種cas9核酸酶(cas9-g915f),具有cas9核酸酶活性,適用于crispr/cas9系統(tǒng),所述cas9核酸酶(cas9-g915f)是將野生型cas9核酸酶第915位的甘氨酸突變成苯丙氨酸獲得。優(yōu)選地,與野生型cas9核酸酶相比,所述cas9核酸酶(cas9-g915f)對(duì)目的基因組dna片段進(jìn)行切割時(shí)產(chǎn)生的突出斷裂末端與鈍斷裂末端的比例不同。優(yōu)選地,所述野生型cas9核酸酶為spcas9。進(jìn)一步地,所述野生型cas9核酸酶的氨基酸序列如seqidno.7所示。優(yōu)選地,所述cas9核酸酶(cas9-g915f)含有如seqidno.9所示的氨基酸序列。優(yōu)選地,所述cas9核酸酶(cas9-g915f)的氨基酸序列如seqidno.9所示。本發(fā)明的第二方面,提供一種多核苷酸,其編碼所述cas9核酸酶(cas9-g915f)。本發(fā)明的第三方面,提供一種表達(dá)載體,其含有前述多核苷酸。本發(fā)明的第四方面,提供一種宿主細(xì)胞,其被前述表達(dá)載體所轉(zhuǎn)化。本發(fā)明的第五方面,提供一種制備所述cas9核酸酶(cas9-g915f)的方法,包括步驟:構(gòu)建含有cas9核酸酶(cas9-g915f)編碼多核苷酸的表達(dá)載體,然后將所述表達(dá)載體轉(zhuǎn)化至宿主細(xì)胞中誘導(dǎo)表達(dá),從表達(dá)產(chǎn)物中分離獲得所述的cas9核酸酶(cas9-g915f)。本發(fā)明的第六方面,提供前述cas9核酸酶(cas9-g915f)或其編碼多核苷酸或含有所述編碼多核苷酸的表達(dá)載體用于基因組dna片段編輯或用于制備基因組dna片段編輯工具的用途。優(yōu)選地,所述編輯包括單位點(diǎn)編輯和多位點(diǎn)編輯。所述多位點(diǎn)編輯的編輯位點(diǎn)數(shù)為兩個(gè)及以上。優(yōu)選地,所述編輯的方式包括突變、刪除、反轉(zhuǎn)或倒位、重復(fù)、易位或插入。本發(fā)明的第七方面,提供一種基因組dna片段編輯工具,所述基因組dna片段編輯工具為crispr/cas9系統(tǒng),所述crispr/cas9系統(tǒng)包括前述cas9核酸酶(cas9-g915f)或其編碼多核苷酸或含有所述編碼多核苷酸的表達(dá)載體。優(yōu)選地,所述crispr/cas9系統(tǒng)包括前述cas9-g915f和針對(duì)目的dna片段的一個(gè)或多個(gè)sgrna。所述多個(gè)是指兩個(gè)及以上。本發(fā)明的第八方面,提供一種基因組dna片段編輯方法,采用前述cas9核酸酶(cas9-g915f)以及與之配合的一個(gè)或多個(gè)sgrna,利用crispr/cas9系統(tǒng)對(duì)待編輯的基因組dna片段進(jìn)行編輯。優(yōu)選地,所述編輯包括單位點(diǎn)編輯和多位點(diǎn)編輯。所述多位點(diǎn)編輯的編輯位點(diǎn)數(shù)為兩個(gè)及以上。優(yōu)選地,所述編輯的方式包括突變、刪除、反轉(zhuǎn)或倒位、重復(fù)、易位或插入。優(yōu)選地,將含有前述cas9核酸酶(cas9-g915f)編碼多核苷酸的表達(dá)載體以及與之配合的一個(gè)或多個(gè)sgrna一同轉(zhuǎn)入細(xì)胞中,對(duì)待編輯的基因組dna片段進(jìn)行編輯。本發(fā)明的第九方面,提供一種基因組dna片段單位點(diǎn)編輯方法,利用crispr/cas9系統(tǒng),采用如權(quán)利要求1所述的cas9核酸酶(cas9-g915f)對(duì)dna雙鏈進(jìn)行切割產(chǎn)生突出斷裂末端,通過(guò)細(xì)胞自身修復(fù)系統(tǒng),以補(bǔ)平連接的方式加入與突出斷裂末端互補(bǔ)的堿基。所述基因組dna片段單位點(diǎn)編輯方法可以改變單位點(diǎn)編輯時(shí)堿基突變的特征。與現(xiàn)有技術(shù)相比,本發(fā)明具有如下有益效果:本發(fā)明的cas9核酸酶(cas9-g915f),適用于crispr/cas9系統(tǒng),所述cas9核酸酶(cas9-g915f)含有如seqidno.9所示的氨基酸序列,所述cas9核酸酶(cas9-g915f)與野生型cas9核酸酶相比,對(duì)目的基因組dna片段進(jìn)行切割時(shí)產(chǎn)生的突出斷裂末端及鈍斷裂末端的比例相對(duì)于野生型cas9核酸酶不同。采用所述cas9核酸酶(cas9-g915f)對(duì)dna雙鏈進(jìn)行切割可產(chǎn)生突出斷裂末端,通過(guò)細(xì)胞自身修復(fù)系統(tǒng),以補(bǔ)平連接的方式可加入與突出斷裂末端互補(bǔ)的堿基,能夠?qū)崿F(xiàn)對(duì)基因組dna片段的特定位置加入特定堿基的精準(zhǔn)編輯。附圖說(shuō)明圖1a:cas9在兩個(gè)sgrnas介導(dǎo)下對(duì)dna雙鏈進(jìn)行切割產(chǎn)生四個(gè)斷裂末端,這些斷裂末端在細(xì)胞修復(fù)系統(tǒng)的作用下產(chǎn)生dna片段刪除、反轉(zhuǎn)和重復(fù)。圖1b:針對(duì)hs51位點(diǎn)的dna片段刪除、反轉(zhuǎn)和重復(fù)情況。圖1c:dna片段刪除接頭處存在“g”的加入。圖1d:dna片段重復(fù)接頭處存在“t”的加入。圖1e:dna片段下游反轉(zhuǎn)接頭處存在“a”、“g”和“ag”的加入。圖1f:針對(duì)這兩個(gè)特定序列的sgrnas,cas9切割方式比例特征。圖2a:cas9核酸酶結(jié)構(gòu)示意圖。圖2b:β-globinre2位點(diǎn)進(jìn)行dna片段編輯的兩個(gè)sgrnas的示意圖。圖2c:通過(guò)檢測(cè)dna片段重復(fù)接頭連接情況統(tǒng)計(jì)出各cas9核酸酶在sgrna1的介導(dǎo)下對(duì)基因組dna片段進(jìn)行切割時(shí)所產(chǎn)生的各種切割末端的占比。圖2d:針對(duì)上游sgrna1,cas9以及cas9突變體對(duì)目的dna片段的切割情況。圖2e:通過(guò)檢測(cè)dna片段刪除接頭連接情況統(tǒng)計(jì)出各cas9核酸酶在sgrna2的介導(dǎo)下對(duì)基因組dna片段進(jìn)行切割時(shí)所產(chǎn)生的各種切割末端的占比。圖2f:針對(duì)下游sgrna2,cas9以及cas9突變體對(duì)目的dna片段的切割情況。圖2g:cas9以及cas9突變體在dna片段反轉(zhuǎn)一側(cè)接頭處堿基加入的實(shí)際和預(yù)測(cè)比例。圖3a:在stm位點(diǎn),針對(duì)上游sgrna1,cas9以及cas9突變體對(duì)目的dna片段的切割情況。圖3b:在stm位點(diǎn),針對(duì)下游sgrna2,cas9以及cas9突變體對(duì)目的dna片段的切割情況。具體實(shí)施方式一、cas9核酸酶本發(fā)明的cas9核酸酶(cas9-g915f),具有cas9核酸酶活性,適用于crispr/cas9系統(tǒng),所述cas9核酸酶(cas9-g915f)是將野生型cas9核酸酶第915位的甘氨酸突變成苯丙氨酸獲得。所述cas9核酸酶(cas9-g915f)與野生型cas9核酸酶相比,對(duì)目的基因組dna片段進(jìn)行切割時(shí)產(chǎn)生的突出斷裂末端與鈍斷裂末端的比例不同。進(jìn)一步地,所述野生型cas9核酸酶為spcas9。進(jìn)一步地,所述野生型cas9核酸酶的氨基酸序列如seqidno.7所示。進(jìn)一步地,所述cas9核酸酶(cas9-g915f)含有如seqidno.9所示的氨基酸序列。本發(fā)明的一些實(shí)施方式中,例舉了所述cas9-g915f的氨基酸序列如seqidno.9所示。二、編碼cas9核酸酶的多核苷酸編碼所述cas9核酸酶(cas9-g915f)的多核苷酸,可以是dna形式或rna形式。dna形式包括cdna、基因組dna或人工合成的dna。dna可以是單鏈的或是雙鏈的。編碼所述cas9核酸酶(cas9-g915f)的多核苷酸,可以通過(guò)本領(lǐng)域技術(shù)人員熟知的任何適當(dāng)?shù)募夹g(shù)制備。所述技術(shù)見(jiàn)于本領(lǐng)域的一般描述,如《分子克隆實(shí)驗(yàn)指南》(j.薩姆布魯克等,科學(xué)出版社,1995)。包括但不限于重組dna技術(shù)、化學(xué)合成等方法。本發(fā)明的一些實(shí)施方式中,例舉了編碼所述cas9核酸酶(cas9-g915f)的多核苷酸如seqidno.10所示。三、表達(dá)載體所述表達(dá)載體含有編碼所述cas9核酸酶(cas9-g915f)的多核苷酸。本領(lǐng)域的技術(shù)人員熟知的方法能用于構(gòu)建所述表達(dá)載體。這些方法包括重組dna技術(shù)、dna合成技術(shù)等。可將所述cas9核酸酶(cas9-g915f)的dna有效連接到載體中的多克隆位點(diǎn)上,以指導(dǎo)mrna合成進(jìn)而表達(dá)蛋白。四、宿主細(xì)胞所述宿主細(xì)胞被表達(dá)所述cas9核酸酶(cas9-g915f)的表達(dá)載體所轉(zhuǎn)化。宿主細(xì)胞可以是原核細(xì)胞,如細(xì)菌細(xì)胞;或是低等真核細(xì)胞,如酵母細(xì)胞;或是高等真核細(xì)胞,如哺乳動(dòng)物細(xì)胞。代表性例子有:大腸桿菌,鏈霉菌屬;鼠傷寒沙門(mén)菌、李斯特細(xì)菌;真菌細(xì)胞如酵母;植物細(xì)胞;果蠅s2或sf9的昆蟲(chóng)細(xì)胞;cho、cos.293細(xì)胞、或bowes黑素瘤細(xì)胞的動(dòng)物細(xì)胞等。五、制備cas9核酸酶(cas9-g915f)的方法制備前述cas9核酸酶(cas9-g915f)的方法,包括步驟:構(gòu)建含有cas9核酸酶(cas9-g915f)編碼多核苷酸序列的表達(dá)載體,然后將所述表達(dá)載體轉(zhuǎn)化至宿主細(xì)胞中誘導(dǎo)表達(dá),從表達(dá)產(chǎn)物中分離獲得所述的cas9核酸酶(cas9-g915f)。本領(lǐng)域技術(shù)人員可根據(jù)cas9核酸酶(cas9-g915f)的性質(zhì)來(lái)選擇合適的表達(dá)載體和宿主細(xì)胞。六、cas9核酸酶(cas9-g915f)或其編碼多核苷酸或含有所述編碼多核苷酸的表達(dá)載體的用途本發(fā)明的cas9核酸酶(cas9-g915f)或其編碼多核苷酸或含有所述編碼多核苷酸的表達(dá)載體可用于基因組dna片段編輯或用于制備基因組dna片段編輯工具。進(jìn)一步地,所述編輯包括單位點(diǎn)編輯和多位點(diǎn)編輯。所述多位點(diǎn)編輯的編輯位點(diǎn)數(shù)為兩個(gè)及以上。所述編輯的方式包括突變、刪除、反轉(zhuǎn)或倒位、重復(fù)、易位或插入。七、基因組dna片段編輯工具本發(fā)明的基因組dna片段編輯工具可以是crispr/cas9系統(tǒng),所述crispr/cas9系統(tǒng)包括前述cas9核酸酶(cas9-g915f)或其編碼多核苷酸或含有所述編碼多核苷酸的表達(dá)載體。進(jìn)一步地,所述crispr/cas9系統(tǒng)還包括針對(duì)目的dna片段的一個(gè)或多個(gè)sgrna。所述sgrna為針對(duì)目的dna片段所設(shè)計(jì),在sgrna(single-guiderna)的介導(dǎo)下,cas9-g915f能夠在pam(protospaceradjacentmotif)位點(diǎn)上游對(duì)dna雙鏈進(jìn)行切割,形成dna雙鏈斷裂,通過(guò)細(xì)胞自身修復(fù)系統(tǒng),完成dna片段的精準(zhǔn)編輯。針對(duì)目的基因的sgrna可以是一個(gè)或兩個(gè)及以上。當(dāng)sgrna是一個(gè)的時(shí)候,可以實(shí)現(xiàn)對(duì)目的dna片段的單位點(diǎn)編輯,當(dāng)sgrna是兩個(gè)及以上的時(shí)候,可以實(shí)現(xiàn)對(duì)目的dna片段的多位點(diǎn)編輯。八、基因組dna片段編輯方法本發(fā)明的基因組dna片段編輯方法,采用前述cas9核酸酶(cas9-g915f)以及與之配合的一個(gè)或多個(gè)sgrna,利用crispr/cas9系統(tǒng)對(duì)待編輯的基因組dna片段進(jìn)行編輯。所述編輯包括單位點(diǎn)編輯和多位點(diǎn)編輯。所述多位點(diǎn)編輯的編輯位點(diǎn)數(shù)為兩個(gè)及以上。當(dāng)sgrna是一個(gè)的時(shí)候,可以實(shí)現(xiàn)對(duì)目的dna片段的單位點(diǎn)編輯,當(dāng)sgrna是兩個(gè)及以上的時(shí)候,可以實(shí)現(xiàn)對(duì)目的dna片段的多位點(diǎn)編輯。進(jìn)一步地,可將前述cas9核酸酶(cas9-g915f)編碼多核苷酸的表達(dá)載體以及與之配合的一個(gè)或多個(gè)sgrna一同轉(zhuǎn)入細(xì)胞中,對(duì)待編輯的基因組dna片段進(jìn)行編輯。九、基因組dna片段單位點(diǎn)編輯方法利用crispr/cas9系統(tǒng),采用本發(fā)明的cas9核酸酶(cas9-g915f)對(duì)dna雙鏈進(jìn)行切割產(chǎn)生突出斷裂末端,以補(bǔ)平連接的方式加入與突出斷裂末端互補(bǔ)的堿基,可實(shí)現(xiàn)對(duì)基因組dna片段的單位點(diǎn)編輯。所述基因組dna片段單位點(diǎn)編輯方法可以改變單位點(diǎn)編輯時(shí)堿基突變的特征。所述補(bǔ)平連接是指:所述突出斷裂末端會(huì)先通過(guò)堿基互補(bǔ)配對(duì)加入與突出的末端互補(bǔ)的堿基補(bǔ)平為鈍末端之后再連接。如本發(fā)明的一些實(shí)施方式中所例舉的,cas9核酸酶g915f在sgrna1的介導(dǎo)下,對(duì)基因組dna片段(β-globinre2位點(diǎn))進(jìn)行切割時(shí),所產(chǎn)生的突出斷裂末端u4,在細(xì)胞修復(fù)系統(tǒng)的作用下,所述突出斷裂末端u4會(huì)先通過(guò)堿基互補(bǔ)配對(duì)加入與突出的末端c互補(bǔ)的堿基g補(bǔ)平為鈍末端后再與連接接頭連接。cas9核酸酶g915f在sgrna2的介導(dǎo)下,對(duì)基因組dna片段(β-globinre2位點(diǎn))進(jìn)行切割時(shí),所產(chǎn)生的突出斷裂末端d4,在細(xì)胞修復(fù)系統(tǒng)的作用下,所述突出斷裂末端d4會(huì)先通過(guò)堿基互補(bǔ)配對(duì)加入與突出的末端a互補(bǔ)的堿基t補(bǔ)平為鈍末端后再與連接接頭連接。說(shuō)明:在本發(fā)明中,cas9可作為cas9核酸酶的簡(jiǎn)稱使用,意思與cas9核酸酶相同。在本發(fā)明中,cas9-g915f、g915f、915f之間可替換使用,意思均為名稱為g915f的cas9核酸酶。在進(jìn)一步描述本發(fā)明具體實(shí)施方式之前,應(yīng)理解,本發(fā)明的保護(hù)范圍不局限于下述特定的具體實(shí)施方案;還應(yīng)當(dāng)理解,本發(fā)明實(shí)施例中使用的術(shù)語(yǔ)是為了描述特定的具體實(shí)施方案,而不是為了限制本發(fā)明的保護(hù)范圍。下列實(shí)施例中未注明具體條件的試驗(yàn)方法,通常按照常規(guī)條件,或者按照各制造商所建議的條件。當(dāng)實(shí)施例給出數(shù)值范圍時(shí),應(yīng)理解,除非本發(fā)明另有說(shuō)明,每個(gè)數(shù)值范圍的兩個(gè)端點(diǎn)以及兩個(gè)端點(diǎn)之間任何一個(gè)數(shù)值均可選用。除非另外定義,本發(fā)明中使用的所有技術(shù)和科學(xué)術(shù)語(yǔ)與本
技術(shù)領(lǐng)域:
:技術(shù)人員通常理解的意義相同。除實(shí)施例中使用的具體方法、設(shè)備、材料外,根據(jù)本
技術(shù)領(lǐng)域:
:的技術(shù)人員對(duì)現(xiàn)有技術(shù)的掌握及本發(fā)明的記載,還可以使用與本發(fā)明實(shí)施例中所述的方法、設(shè)備、材料相似或等同的現(xiàn)有技術(shù)的任何方法、設(shè)備和材料來(lái)實(shí)現(xiàn)本發(fā)明。除非另外說(shuō)明,本發(fā)明中所公開(kāi)的實(shí)驗(yàn)方法、檢測(cè)方法、制備方法均采用本
技術(shù)領(lǐng)域:
:常規(guī)的分子生物學(xué)、生物化學(xué)、染色質(zhì)結(jié)構(gòu)和分析、分析化學(xué)、細(xì)胞培養(yǎng)、重組dna技術(shù)及相關(guān)領(lǐng)域的常規(guī)技術(shù)。這些技術(shù)在現(xiàn)有文獻(xiàn)中已有完善說(shuō)明,具體可參見(jiàn)sambrook等molecularcloning:alaboratorymanual,secondedition,coldspringharborlaboratorypress,1989andthirdedition,2001;ausubel等,currentprotocolsinmolecularbiology,johnwiley&sons,newyork,1987andperiodicupdates;theseriesmethodsinenzymology,academicpress,sandiego;wolffe,chromatinstructureandfunction,thirdedition,academicpress,sandiego,1998;methodsinenzymology,vol.304,chromatin(p.m.wassarmananda.p.wolffe,eds.),academicpress,sandiego,1999;和methodsinmolecularbiology,vol.119,chromatinprotocols(p.b.becker,ed.)humanapress,totowa,1999等。實(shí)施例1研究dna片段編輯接頭的連接情況發(fā)現(xiàn)cas9切割新機(jī)制針對(duì)hs51位點(diǎn),構(gòu)建針對(duì)hs51位點(diǎn)的sgrnas質(zhì)粒:(1)購(gòu)買(mǎi)引物從上海桑尼生物科技有限公司購(gòu)買(mǎi)分別針對(duì)hs51位點(diǎn)和的sgrnas靶向序列的有5’懸掛端“accg”和“aaac”可以互補(bǔ)配對(duì)的正反向脫氧寡核苷酸;針對(duì)上述hs51位點(diǎn)的sgrnas靶向序列:hs51re1sgrna1:gccacacatccaaggctgac(seqidno.1)hs51re1sgrna2:gagatttggggcgtcaggaag(seqidno.2)(2)獲得互補(bǔ)配對(duì)的帶有懸掛端的雙鏈dna1)用ddh2o將脫氧寡核苷酸溶解至100μm,并稀釋至20μm;2)將正反脫氧寡核苷酸加入如下反應(yīng)體系:反應(yīng)條件:95℃水浴,5min,然后打開(kāi)水浴鍋蓋子溫度降至60℃左右,蓋上蓋子冷卻至室溫。(3)酶切pgl3-u6-sgrna-pgk-purovector1)用bsai限制性內(nèi)切酶酶切載體質(zhì)粒,反應(yīng)體系如下:反應(yīng)條件:37℃,1.5小時(shí);2)膠回收純化dna酶切片段,按照膠回收試劑盒(axygen)說(shuō)明純化。(4)連接酶切后的載體與帶有懸掛端的雙鏈dna連接體系如下:反應(yīng)條件:室溫反應(yīng)1.5小時(shí);(5)轉(zhuǎn)化連接產(chǎn)物用stbl3感受態(tài)轉(zhuǎn)化連接產(chǎn)物,在含氨芐抗生素(amp,100mg/l)lb平板培養(yǎng)過(guò)夜,37℃。(6)挑取單克隆測(cè)序1)從氨芐抗生素lb平板上挑取單菌落,lb(amp,100mg/l)液體培養(yǎng)過(guò)夜;2)質(zhì)粒提取,按照質(zhì)粒小抽試劑盒(axygen)說(shuō)明提??;3)提取后的質(zhì)粒送上海桑尼生物科技有限公司測(cè)序。(7)測(cè)序成功質(zhì)粒進(jìn)行中抽1)測(cè)序成功的質(zhì)粒用stbl3感受態(tài)重新轉(zhuǎn)化,在含amp(100mg/l)的lb平板培養(yǎng)過(guò)夜;2)上午挑取單菌落在2mllb(amp,100mg/l)液體培養(yǎng)基中培養(yǎng)8小時(shí),然后轉(zhuǎn)接到200mllb(amp,100mg/l)液體培養(yǎng)基中培養(yǎng)過(guò)夜;3)收集細(xì)菌,按照質(zhì)粒中抽試劑盒(qiagen)說(shuō)明提取質(zhì)粒。2.人源化cas9質(zhì)粒制備1)人源化cas9質(zhì)粒從北京大學(xué)席建中實(shí)驗(yàn)室獲得;2)用stbl3感受態(tài)重新轉(zhuǎn)化,在lb平板(amp,100mg/l)培養(yǎng)過(guò)夜;3)上午挑取單菌落在2mllb(amp,100mg/l)液體培養(yǎng)基中培養(yǎng)8小時(shí),然后轉(zhuǎn)接到200mllb(amp,100mg/l)液體培養(yǎng)基中培養(yǎng)過(guò)夜,進(jìn)行質(zhì)粒中抽。3.用lipofectamine2000進(jìn)行細(xì)胞轉(zhuǎn)染1)hek293t細(xì)胞培養(yǎng)在培養(yǎng)瓶中,在37℃,含有5%co2細(xì)胞培養(yǎng)箱中培養(yǎng),待其長(zhǎng)至培養(yǎng)瓶80~90%。2)將長(zhǎng)好的細(xì)胞在12孔板中用dmem完全無(wú)抗培養(yǎng)基(加入10%胎牛血清,無(wú)青鏈霉素雙抗)進(jìn)行鋪板,過(guò)夜培養(yǎng)。3)待12孔板中的細(xì)胞長(zhǎng)至80~90%時(shí),將制備好的人源化cas9質(zhì)粒(800ng)和針對(duì)hs51位點(diǎn)的sgrnas質(zhì)粒(各600ng)通過(guò)lipofectamine2000進(jìn)行細(xì)胞轉(zhuǎn)染,每個(gè)樣品各兩個(gè)重復(fù)。4)轉(zhuǎn)染后兩天,收集細(xì)胞,用基因組提取試劑盒(genomicdnapurificationkit,promega)提取基因組。4.制備高通量測(cè)序文庫(kù)在dna片段預(yù)期刪除、反轉(zhuǎn)和重復(fù)接頭的精準(zhǔn)連接位點(diǎn)上游大約30bp處設(shè)計(jì)引物,然后將引物5’端加上帶有barcode的illumina的測(cè)序接頭,下游引物可以設(shè)計(jì)在遠(yuǎn)離拼接位點(diǎn)一些的位置并加上illumina的測(cè)序接頭,進(jìn)行pcr擴(kuò)增,然后使用羅氏pcr純化試劑盒(productno.:11732676001)進(jìn)行純化,dna產(chǎn)物溶解在10mmtris-hclbuffer(ph=8.5),等量混合后形成庫(kù),進(jìn)行高通量測(cè)序。高通量引物:hiseq-hhs51-af:atgatacggcgaccaccgagatctacactctttccctacacgacgctcttccgatctgcaaggagatccgtgtcgtc(seqidno.3)hiseq-hs51-ara:aatgatacggcgaccaccgagatctacactctttccctacacgacgctcttccgatctaaggatgttgtggaaggcgagcag(seqidno.4)hiseq-hs51-bfa:caagcagaagacggcatacgagatggacgggtgactggagttcagacgtgtgctcttccgatctctttacatgacagcttccggtag(seqidno.5)hiseq-hhs51-br:caagcagaagacggcatacgagatttgactgtgactggagttcagacgtgtgctcttccgatcttttttggctaacaacatagtgcttc(seqidno.6)。5.高通量測(cè)序數(shù)據(jù)處理高通量測(cè)序完成后,使用linux程序?qū)悠返臏y(cè)序結(jié)果從文庫(kù)中通過(guò)barcode分出來(lái),保存在各自的文件夾,然后進(jìn)行bwa-mem比對(duì),比對(duì)后的序列通過(guò)varscan2程序(v2.3.9)分析dna片段的插入和刪除突變,varscan2程序參數(shù)如下:本發(fā)明通過(guò)研究dna片段編輯的末端連接情況發(fā)現(xiàn)cas9切割新機(jī)制。如圖1a所示,采用兩個(gè)sgrnas形成的sgrna組合及cas9核酸酶對(duì)基因組dna片段進(jìn)行編輯時(shí),cas9核酸酶在兩個(gè)sgrnas介導(dǎo)下對(duì)基因組dna雙鏈進(jìn)行切割產(chǎn)生四個(gè)斷裂末端(dsb),這些斷裂末端(dsb)在細(xì)胞修復(fù)系統(tǒng)(例如,mrn/ctip)的作用下產(chǎn)生dna片段刪除、反轉(zhuǎn)和重復(fù)等dna片段編輯。如圖1b所示,針對(duì)基因組dna片段hs51re1(hs51位點(diǎn)),我們采用sgrna1和sgrna2形成的sgrna組合及cas9核酸酶對(duì)其進(jìn)行編輯。而后,我們檢測(cè)到了dna片段刪除、反轉(zhuǎn)和重復(fù),再利用高通量測(cè)序技術(shù)檢測(cè)dna片段刪除、反轉(zhuǎn)和重復(fù)連接接頭的情況,除了與預(yù)期相符的精準(zhǔn)連接(joinedprecisely)外,dna片段刪除連接接頭、反轉(zhuǎn)下游連接接頭和重復(fù)連接接頭處都存在一定比例的堿基加入(insertion)。如圖1c所示,利用高通量測(cè)序技術(shù)檢測(cè)dna片段刪除連接接頭的情況,與預(yù)期相符的精準(zhǔn)連接(joinedprecisely)比例占79.23%,刪除接頭處還存在“g”堿基的加入(insertion,與預(yù)期的精準(zhǔn)連接相比),其比例占11.13%。與預(yù)期的精準(zhǔn)連接相比,推測(cè)dna片段刪除連接接頭處加入的“g”堿基是來(lái)源于模版dna(hs51re1,hs51位點(diǎn))的pam上游3bp附近(具體為pam上游4bp處)的堿基。因此,推測(cè)cas9核酸酶對(duì)與sgrna互補(bǔ)的dna鏈進(jìn)行切割時(shí),是在pam上游3bp處進(jìn)行切割;而cas9核酸酶對(duì)與sgrna非互補(bǔ)的dna鏈進(jìn)行切割時(shí),可在pam上游3bp處更遠(yuǎn)的4bp處進(jìn)行切割。根據(jù)dna片段刪除連接接頭處存在“g”堿基的加入(與預(yù)期的精準(zhǔn)連接相比),推測(cè)cas9核酸酶在sgrna2介導(dǎo)下對(duì)基因組dna片段進(jìn)行切割時(shí),有鈍末端切割和突出末端切割,進(jìn)而產(chǎn)生不同斷裂末端。當(dāng)cas9核酸酶在sgrna2介導(dǎo)下對(duì)基因組dna片段進(jìn)行了鈍末端切割時(shí),也就是cas9核酸酶對(duì)與sgrna互補(bǔ)的dna鏈及非互補(bǔ)的dna鏈進(jìn)行切割時(shí)均是在pam上游3bp處進(jìn)行切割,產(chǎn)生了鈍斷裂末端“e3”。鈍斷裂末端“e3”在細(xì)胞修復(fù)系統(tǒng)的作用下產(chǎn)生dna片段刪除時(shí),不會(huì)導(dǎo)致dna片段刪除連接接頭處“g”堿基的加入,而是產(chǎn)生與預(yù)期相符的精準(zhǔn)連接(joinedprecisely)。當(dāng)cas9核酸酶在sgrna2介導(dǎo)下對(duì)基因組dna片段進(jìn)行了突出末端切割時(shí),也就是cas9核酸酶對(duì)與sgrna互補(bǔ)的dna鏈進(jìn)行切割時(shí)是在pam上游3bp處進(jìn)行切割,而對(duì)與sgrna非互補(bǔ)的dna鏈進(jìn)行切割時(shí)是在pam上游4bp處進(jìn)行切割,從而產(chǎn)生了5’突出斷裂末端“e4”。5’突出斷裂末端“e4”在細(xì)胞修復(fù)系統(tǒng)的作用下產(chǎn)生dna片段刪除時(shí),會(huì)導(dǎo)致dna片段刪除連接接頭處“g”堿基的加入。因此,我們認(rèn)為:在cas9核酸酶的切割下,產(chǎn)生的斷裂末端中,鈍斷裂末端e3的比例=預(yù)期相符的精準(zhǔn)連接(joinedprecisely)的比例=79.23%。突出斷裂末端e4的比例=“g”堿基的加入比例=11.13%。但是,我們觀察到,除了與預(yù)期相符的精準(zhǔn)連接(joinedprecisely)以及dna片段刪除連接接頭處存在“g”堿基的加入這兩大類情況以外,還有一類隨機(jī)的堿基刪除(smalldeletion)。我們認(rèn)為這類隨機(jī)的堿基刪除(smalldeletion)是各斷裂末端(鈍斷裂末端e3和突出斷裂末端e4)在細(xì)胞修復(fù)系統(tǒng)的作用下隨機(jī)產(chǎn)生的,各斷裂末端以均等的概率來(lái)產(chǎn)生堿基刪除(smalldeletion),各斷裂末端在細(xì)胞修復(fù)系統(tǒng)的作用下所產(chǎn)生的堿基刪除(smalldeletion)的數(shù)量與各斷裂末端的數(shù)量成正比?;陔S機(jī)堿基刪除現(xiàn)象的存在,我們認(rèn)為,經(jīng)過(guò)測(cè)序獲得的各斷裂末端的實(shí)測(cè)比例與其真實(shí)比例存在差距,需要進(jìn)行修正還原,即以各種斷裂末端的實(shí)測(cè)比例之和為基準(zhǔn),計(jì)算各斷裂末端的比例,以此作為該斷裂末端的占比。即對(duì)cas9核酸酶的切割所產(chǎn)生的各斷裂末端的比例進(jìn)行標(biāo)準(zhǔn)化計(jì)算,鈍斷裂末端e3的比例為87.7%【計(jì)算方法為:79.23%÷(79.23%+11.13%)】。突出斷裂末端e4的比例為12.3%【計(jì)算方法為:11.13%÷(79.23%+11.13%)】。亦即,cas9核酸酶在sgrna2的介導(dǎo)下對(duì)基因組dna片段進(jìn)行的切割方式中,鈍末端切割的比例為87.7%,突出末端切割的比例為12.3%。如圖1d所示,利用高通量測(cè)序技術(shù)檢測(cè)dna片段重復(fù)連接接頭的情況,與預(yù)期相符的精準(zhǔn)連接(joinedprecisely)的比例占8.96%,連接接頭處存在“t”堿基的加入(insertion,與預(yù)期的精準(zhǔn)連接相比)的比例占82.92%。與預(yù)期的精準(zhǔn)連接相比,推測(cè)dna片段重復(fù)連接接頭處加入的“t”堿基是來(lái)源于模版dna(hs51re1,hs51位點(diǎn))上的pam上游3bp附近(具體為pam上游4bp處)的堿基。因此,推測(cè)cas9核酸酶對(duì)與sgrna互補(bǔ)的dna鏈進(jìn)行切割時(shí),是在pam上游3bp處進(jìn)行切割;而cas9核酸酶對(duì)與sgrna非互補(bǔ)的dna鏈進(jìn)行切割時(shí),可在pam上游3bp處更遠(yuǎn)的4bp處進(jìn)行切割。根據(jù)dna片段重復(fù)連接接頭處檢測(cè)到存在“t”堿基的加入(與預(yù)期的精準(zhǔn)連接相比),推測(cè)cas9核酸酶在sgrna1介導(dǎo)下對(duì)基因組dna片段進(jìn)行切割時(shí),有鈍末端切割和突出末端切割,進(jìn)而產(chǎn)生不同斷裂末端。當(dāng)cas9核酸酶在sgrna1介導(dǎo)下對(duì)基因組dna片段進(jìn)行了鈍末端切割時(shí),也就是cas9核酸酶對(duì)與sgrna互補(bǔ)的dna鏈及非互補(bǔ)的dna鏈進(jìn)行切割時(shí)均是在pam上游3bp處進(jìn)行切割,產(chǎn)生了鈍斷裂末端“c3”。鈍斷裂末端“c3”在細(xì)胞修復(fù)系統(tǒng)的作用下產(chǎn)生dna片段重復(fù)時(shí),不會(huì)導(dǎo)致dna片段重復(fù)連接接頭處“t”堿基的加入,而是產(chǎn)生與預(yù)期相符的精準(zhǔn)連接(joinedprecisely)。當(dāng)cas9核酸酶在sgrna1介導(dǎo)下對(duì)基因組dna片段進(jìn)行了突出末端切割時(shí),也就是cas9核酸酶對(duì)與sgrna互補(bǔ)的dna鏈進(jìn)行切割時(shí)是在pam上游3bp處進(jìn)行切割,而對(duì)與sgrna非互補(bǔ)的dna鏈進(jìn)行切割時(shí)是在pam上游4bp處進(jìn)行切割,從而產(chǎn)生了5’突出斷裂末端“c4”。5’突出斷裂末端“c4”在細(xì)胞修復(fù)系統(tǒng)的作用下產(chǎn)生dna片段重復(fù)時(shí),會(huì)導(dǎo)致dna片段重復(fù)連接接頭處“t”堿基的加入。因此,我們認(rèn)為:在cas9核酸酶的切割下,產(chǎn)生的斷裂末端中,鈍斷裂末端c3的比例=預(yù)期相符的精準(zhǔn)連接(joinedprecisely)的比例=8.96%。突出斷裂末端c4的比例=“t”堿基的加入比例=82.92%。但是,我們觀察到,除了與預(yù)期相符的精準(zhǔn)連接(joinedprecisely)以及dna片段重復(fù)連接接頭處存在“t”堿基的加入這兩大類情況以外,還有一類隨機(jī)的堿基刪除(smalldeletion)。我們認(rèn)為這類隨機(jī)的堿基刪除(smalldeletion)是各斷裂末端(鈍斷裂末端c3和突出斷裂末端c4)在細(xì)胞修復(fù)系統(tǒng)的作用下隨機(jī)產(chǎn)生的,各斷裂末端以均等的概率來(lái)產(chǎn)生堿基刪除(smalldeletion),各斷裂末端在細(xì)胞修復(fù)系統(tǒng)的作用下所產(chǎn)生的堿基刪除(smalldeletion)的數(shù)量與各斷裂末端的數(shù)量成正比?;陔S機(jī)堿基刪除現(xiàn)象的存在,我們認(rèn)為,經(jīng)過(guò)測(cè)序獲得的各斷裂末端的實(shí)測(cè)比例與其真實(shí)比例存在差距,需要進(jìn)行修正還原,即以各種斷裂末端的實(shí)測(cè)比例之和為基準(zhǔn),計(jì)算各斷裂末端的比例,以此作為該斷裂末端的占比。即對(duì)cas9核酸酶的切割所產(chǎn)生的各斷裂末端的比例進(jìn)行標(biāo)準(zhǔn)化計(jì)算,鈍斷裂末端c3的比例為9.75%【計(jì)算方法為:8.96%÷(8.96%+82.92%)】。突出斷裂末端c4的比例為90.25%【計(jì)算方法為:82.92%÷(8.96%+82.92%)】。亦即,cas9核酸酶在sgrna1的介導(dǎo)下對(duì)基因組dna片段進(jìn)行的切割方式中,鈍末端切割的比例為9.75%,突出末端切割的比例為90.25%。如圖1e所示,根據(jù)cas9核酸酶在sgrna1和sgrna2的介導(dǎo)下分別對(duì)基因組dna片段進(jìn)行切割的方式比例,預(yù)測(cè)產(chǎn)生的斷裂末端的序列,進(jìn)而推算出dna片段反轉(zhuǎn)下游連接接頭處的堿基加入情況及比例。當(dāng)cas9核酸酶在sgrna1的介導(dǎo)下對(duì)基因組dna片段進(jìn)行突出末端切割,產(chǎn)生突出斷裂末端“c4”,cas9核酸酶在sgrna2的介導(dǎo)下對(duì)基因組dna片段進(jìn)行鈍末端切割,產(chǎn)生鈍斷裂末端“e3”,則在細(xì)胞修復(fù)系統(tǒng)的作用下,dna片段反轉(zhuǎn)下游接頭處會(huì)出現(xiàn)“a”堿基的加入,且發(fā)生的比例為79.14%【計(jì)算方法為:“c4”突出斷裂末端占比(90.25%)x“e3”鈍斷裂末端占比(87.7%)=79.14%】,與實(shí)驗(yàn)檢測(cè)到的dna片段反轉(zhuǎn)下游接頭處“a”堿基加入比例71.94%相近。當(dāng)cas9核酸酶在sgrna1的介導(dǎo)下對(duì)基因組dna片段進(jìn)行鈍末端切割,產(chǎn)生鈍斷裂末端“c3”,cas9核酸酶在sgrna2的介導(dǎo)下對(duì)基因組dna片段進(jìn)行突出末端切割,產(chǎn)生突出斷裂末端“e4”,則在細(xì)胞修復(fù)系統(tǒng)的作用下,dna片段反轉(zhuǎn)下游接頭處會(huì)出現(xiàn)“g”堿基的加入,且發(fā)生的比例為1.19%【計(jì)算方法為:“c3”鈍斷裂末端占比(9.75%)x“e4”突出斷裂末端占比(12.3%)=1.19%】,與實(shí)驗(yàn)檢測(cè)到的dna片段反轉(zhuǎn)下游接頭處“g”堿基加入比例8.54%相近。當(dāng)cas9核酸酶在sgrna1的介導(dǎo)下對(duì)基因組dna片段進(jìn)行突出末端切割,產(chǎn)生突出斷裂末端“c4”,cas9核酸酶在sgrna2的介導(dǎo)下對(duì)基因組dna片段進(jìn)行突出末端切割,產(chǎn)生突出斷裂末端“e4”,則在細(xì)胞修復(fù)系統(tǒng)的作用下,dna片段反轉(zhuǎn)下游接頭處會(huì)出現(xiàn)“ag”堿基的加入,且發(fā)生的比例為11%【計(jì)算方法為:“c4”突出斷裂末端占比(90.25%)x“e4”突出斷裂末端占比(12.3%)=11%】,與實(shí)驗(yàn)檢測(cè)到的dna片段反轉(zhuǎn)下游接頭處“ag”堿基加入比例3.66%相近。當(dāng)cas9核酸酶在sgrna1的介導(dǎo)下對(duì)基因組dna片段進(jìn)行鈍末端切割,產(chǎn)生鈍斷裂末端“c3”,cas9核酸酶在sgrna2的介導(dǎo)下對(duì)基因組dna片段進(jìn)行鈍末端切割,產(chǎn)生鈍斷裂末端“e3”,則在細(xì)胞修復(fù)系統(tǒng)的作用下,dna片段反轉(zhuǎn)下游接頭精準(zhǔn)連接,且發(fā)生的比例為8.55%【計(jì)算方法為:“c3”鈍斷裂末端占比(9.75%)x“e3”鈍斷裂末端占比(87.7%)=8.55%】,與實(shí)驗(yàn)檢測(cè)到的dna片段反轉(zhuǎn)下游接頭精準(zhǔn)連接比例6.67%相近。綜上所述,圖1e的實(shí)驗(yàn)結(jié)果進(jìn)一步證實(shí)了:cas9核酸酶對(duì)與sgrna非互補(bǔ)的dna鏈進(jìn)行切割時(shí),可在pam上游3bp處到更遠(yuǎn)堿基處進(jìn)行切割。cas9核酸酶在sgrna介導(dǎo)下對(duì)基因組dna片段進(jìn)行切割時(shí),有鈍末端切割和突出末端切割,進(jìn)而產(chǎn)生不同斷裂末端。這些斷裂末端在細(xì)胞修復(fù)系統(tǒng)的作用下,產(chǎn)生與預(yù)期相符的精準(zhǔn)dna片段編輯(特定堿基的精準(zhǔn)編輯)或者與預(yù)期不符的基因編輯(隨機(jī)的堿基刪除)。如圖1f所示,sgrna組合中,sgrna的設(shè)計(jì)不同(靶序列不同),cas9核酸酶在sgrna的介導(dǎo)下對(duì)基因組dna片段進(jìn)行切割方式比例不同,產(chǎn)生的斷裂末端比例不同。具體地,cas9核酸酶在sgrna1的介導(dǎo)下對(duì)基因組dna片段進(jìn)行切割時(shí),鈍末端切割方式的占比高于突出末端切割方式占比,產(chǎn)生的鈍斷裂末端占比高于5’突出斷裂末端占比。然而cas9核酸酶在sgrna2的介導(dǎo)下對(duì)基因組dna片段進(jìn)行切割時(shí),突出末端切割方式的占比高于鈍末端切割方式占比,產(chǎn)生的5’突出斷裂末端占比也高于鈍斷裂末端占比。由于發(fā)現(xiàn)cas9核酸酶在sgrna介導(dǎo)下對(duì)基因組dna片段進(jìn)行切割的方式有鈍末端切割和突出末端切割,當(dāng)cas9核酸酶在sgrna介導(dǎo)下對(duì)基因組dna片段進(jìn)行突出末端切割,產(chǎn)生突出斷裂末端時(shí),按照補(bǔ)平連接的方式可加入與突出斷裂末端互補(bǔ)的堿基,從而實(shí)現(xiàn)對(duì)基因組dna片段特定位置的堿基加入。實(shí)施例2突變spcas9獲得切割方式改變的特定cas9實(shí)現(xiàn)精準(zhǔn)的dna片段編輯1.構(gòu)建cas9突變體1)使用neb突變?cè)噭┖?q5site-directedmutagenesiskit,#e0554s)構(gòu)建cas9突變體,首先進(jìn)行pcr擴(kuò)增,反應(yīng)如下:2)kld(kinase,ligase&dpni)處理,反應(yīng)如下:反應(yīng)條件:室溫10分鐘3)將2)中的反應(yīng)產(chǎn)物全部用于感受態(tài)細(xì)菌stbl3(50μl)的轉(zhuǎn)化,在含氨芐抗生素(amp,100mg/l)lb平板培養(yǎng)過(guò)夜,37℃。挑取單克隆,質(zhì)粒提取后送測(cè)序。spcas9(cas9wt)的氨基酸序列如seqidno.7所示,具體為:spcas9(cas9wt)的編碼核苷酸序列如seqidno.8所示,具體為:如圖2a所示,cas9核酸酶含有ruvc和hnh功能域,ruvc功能域負(fù)責(zé)切割與sgrna非互補(bǔ)的dna鏈,hnh功能域負(fù)責(zé)切割與sgrna互補(bǔ)的dna鏈。本發(fā)明要求保護(hù)的cas9核酸酶突變體命名為cas9-g915f(將spcas9核酸酶第915位甘氨酸突變成苯丙氨酸),cas9-g915f的氨基酸序列seqidno.9所示,具體為:cas9-g915f的編碼核苷酸序列如seqidno.10所示,具體為:此外,以對(duì)spcas9進(jìn)行隨機(jī)突變獲得的突變體k775a、r778a、e779a、k918p作為對(duì)照,這些對(duì)照突變體與本發(fā)明的cas9-g915f的序列均不同。2.cas9核酸酶突變體進(jìn)行dna片段編輯(1)針對(duì)β-globinre2(rrm21位點(diǎn)),構(gòu)建rrm21位點(diǎn)(β-globinre2)的sgrnas。所述sgrnas靶向序列:β-globinre2sgrna1:acccaatgacctcaggctgt(seqidno.11);β-globinre2sgrna2:tcacttgttagcggcatctg(seqidno.12);從上海桑尼生物科技有限公司購(gòu)買(mǎi)針對(duì)β-globinre2(rrm21位點(diǎn))的sgrnas靶向序列的有5’懸掛端“accg”和“aaac”可以互補(bǔ)配對(duì)的正反向脫氧寡核苷酸。(2)獲得互補(bǔ)配對(duì)的帶有懸掛端的雙鏈dna1)用ddh2o將脫氧寡核苷酸溶解至100μm,并稀釋至20μm;2)將正反脫氧寡核苷酸加入如下反應(yīng)體系:反應(yīng)條件:95℃水浴,5min,然后打開(kāi)水浴鍋蓋子溫度降至60℃左右,蓋上蓋子冷卻至室溫。(3)酶切pgl3-u6-sgrna-pgk-purovector1)用bsai限制性內(nèi)切酶酶切載體質(zhì)粒,反應(yīng)體系如下:反應(yīng)條件:37℃,1.5小時(shí);2)膠回收純化dna酶切片段,按照膠回收試劑盒(axygen)說(shuō)明純化。(4)連接酶切后的載體與帶有懸掛端的雙鏈dna連接體系如下:反應(yīng)條件:室溫反應(yīng)1.5小時(shí);(5)轉(zhuǎn)化連接產(chǎn)物用stbl3感受態(tài)轉(zhuǎn)化連接產(chǎn)物,在含氨芐抗生素(amp,100mg/l)lb平板培養(yǎng)過(guò)夜,37℃。(6)挑取單克隆測(cè)序1)從氨芐抗生素lb平板上挑取單菌落,lb(amp,100mg/l)液體培養(yǎng)過(guò)夜;2)質(zhì)粒提取,按照質(zhì)粒小抽試劑盒(axygen)說(shuō)明提??;3)提取后的質(zhì)粒送上海桑尼生物科技有限公司測(cè)序。(7)測(cè)序成功質(zhì)粒進(jìn)行中抽1)測(cè)序成功的質(zhì)粒用stbl3感受態(tài)重新轉(zhuǎn)化,在含amp(100mg/l)的lb平板培養(yǎng)過(guò)夜;2)上午挑取單菌落在2mllb(amp,100mg/l)液體培養(yǎng)基中培養(yǎng)8小時(shí),然后轉(zhuǎn)接到200mllb(amp,100mg/l)液體培養(yǎng)基中培養(yǎng)過(guò)夜;3)收集細(xì)菌,按照質(zhì)粒中抽試劑盒(qiagen)說(shuō)明提取質(zhì)粒。(8)用lipofectamine2000進(jìn)行細(xì)胞轉(zhuǎn)染1)hek293t細(xì)胞培養(yǎng)在培養(yǎng)瓶中,在37℃,含有5%co2細(xì)胞培養(yǎng)箱中培養(yǎng),待其長(zhǎng)至培養(yǎng)瓶80~90%,將長(zhǎng)好的細(xì)胞在12孔板中用dmem完全無(wú)抗培養(yǎng)基進(jìn)行鋪板,過(guò)夜培養(yǎng);2)待12孔板中的細(xì)胞長(zhǎng)至80~90%時(shí),將制備好的cas9和cas9突變體質(zhì)粒(800ng)與針對(duì)rrm21位點(diǎn)的sgrnas質(zhì)粒(各600ng)通過(guò)lipofectamine2000進(jìn)行細(xì)胞轉(zhuǎn)染,每個(gè)樣品各兩個(gè)重復(fù)。3)轉(zhuǎn)染后兩天,收集細(xì)胞,用基因組提取試劑盒(genomicdnapurificationkit,promega)提取基因組。(9)制備高通量測(cè)序文庫(kù)在dna片段預(yù)期刪除、反轉(zhuǎn)和重復(fù)接頭的精準(zhǔn)連接位點(diǎn)上游大約30bp處設(shè)計(jì)引物,然后將引物5’端加上帶有barcode的illumina的測(cè)序接頭,下游引物可以設(shè)計(jì)在遠(yuǎn)離拼接位點(diǎn)一些的位置并加上illumina的測(cè)序接頭,進(jìn)行pcr擴(kuò)增,然后使用羅氏pcr純化試劑盒(productno.:11732676001)進(jìn)行純化,dna產(chǎn)物溶解在10mmtris-hclbuffer(ph=8.5),等量混合后形成庫(kù),進(jìn)行高通量測(cè)序。cas9突變引物:cas9-g915f-f:ggataaagcattcttcatcaaaaggcagc(seqidno.13);cas9-g915f-r:aactcagacaggccacct(seqidno.14);(10)高通量測(cè)序數(shù)據(jù)處理高通量測(cè)序完成后,使用linux程序?qū)悠返臏y(cè)序結(jié)果從文庫(kù)中通過(guò)barcode分出來(lái),保存在各自的文件夾,然后進(jìn)行bwa-mem比對(duì),比對(duì)后的序列通過(guò)varscan2程序(v2.3.9)分析dna片段的插入和刪除突變,varscan2程序參數(shù)如下:針對(duì)β-globinre2位點(diǎn),利用高通量測(cè)序引物進(jìn)行pcr擴(kuò)增dna片段刪除、反轉(zhuǎn)和重復(fù),建庫(kù)進(jìn)行高通量測(cè)序。高通量引物:hiseq-rrm-1f3:aatgatacggcgaccaccgagatctacactctttccctacacgacgctcttccgatctatatggcatcctagccttaagaaactag(seqidno.15)hiseq-rrm-1r2:aatgatacggcgaccaccgagatctacactctttccctacacgacgctcttccgatcttacgacgcaggagccgtatcatg(seqidno.16)hiseq-rrm-3f2:caagcagaagacggcatacgagataagctagtgactggagttcagacgtgtgctcttccgatctatagcaatgaaatcttgaaggagtg(seqidno.17)hiseq-rrm-3r2:caagcagaagacggcatacgagattcaagtgtgactggagttcagacgtgtgctcttccgatctgcacagccctgctctattacg(seqidno.18)。參照上述實(shí)施例1的方法,采用兩個(gè)sgrnas形成的sgrna組合及cas9核酸酶對(duì)基因組dna片段進(jìn)行編輯后,可利用高通量測(cè)序技術(shù)檢測(cè)dna片段刪除和重復(fù)的連接接頭堿基加入情況,進(jìn)而計(jì)算出cas9核酸酶在各sgrna介導(dǎo)下對(duì)基因組dna片段進(jìn)行切割時(shí),鈍末端切割方式和突出末端切割方式的占比。具體地,野生型spcas9核酸酶(簡(jiǎn)稱cas9wt,wt)(圖2a)和g915f在sgrna組合中各sgrna介導(dǎo)下對(duì)基因組dna片段β-globinre2位點(diǎn)進(jìn)行編輯的兩個(gè)sgrnas的示意圖如圖2b。如圖2c所示,利用高通量測(cè)序技術(shù)檢測(cè)dna片段重復(fù)連接接頭的情況,除了與預(yù)期相符的精準(zhǔn)連接(joinedprecisely)以外,還存在與預(yù)期的精準(zhǔn)連接相比,連接接頭處加入了“c”堿基和“gc”堿基的情況。選用不同的cas9核酸酶時(shí),檢測(cè)到的與預(yù)期相符的精準(zhǔn)連接(joinedprecisely)、“+c”堿基、“+gc”堿基的占比不同。以選用g915f這個(gè)cas9核酸酶為例,檢測(cè)到與預(yù)期相符的精準(zhǔn)連接(joinedprecisely)的占比為68.76%,“+c”堿基的占比為15.04%,“+gc”堿基的占比為0.20%。鑒于dna片段重復(fù)連接接頭處檢測(cè)到存在“c”堿基的加入(與預(yù)期的精準(zhǔn)連接相比),我們推測(cè)dna片段重復(fù)連接接頭處加入的“c”堿基是來(lái)源于模版dna(β-globinre2位點(diǎn))上的pam(agg)上游4bp處的堿基。并且,進(jìn)一步推測(cè)g915f這個(gè)cas9核酸酶在sgrna1的介導(dǎo)下對(duì)基因組dna片段(β-globinre2位點(diǎn))進(jìn)行切割時(shí),對(duì)與sgrna互補(bǔ)的dna鏈進(jìn)行切割時(shí),是在pam上游3bp處進(jìn)行切割,而對(duì)與sgrna非互補(bǔ)dna鏈進(jìn)行切割時(shí),則是在pam(agg)上游4bp處進(jìn)行突出末端切割,從而產(chǎn)生了突出斷裂末端u4。突出斷裂末端u4在細(xì)胞修復(fù)系統(tǒng)的作用下產(chǎn)生dna片段重復(fù)時(shí),導(dǎo)致了dna片段重復(fù)連接接頭處“c”堿基的加入。同理,鑒于dna片段重復(fù)連接接頭處檢測(cè)到存在“gc”堿基的加入(與預(yù)期的精準(zhǔn)連接相比),我們推測(cè)dna片段重復(fù)連接接頭處加入的“gc”堿基是來(lái)源于模版dna(β-globinre2位點(diǎn))上的pam(agg)上游4bp處和5bp的堿基。進(jìn)一步推測(cè)g915f這個(gè)cas9核酸酶在sgrna1的介導(dǎo)下對(duì)基因組dna片段(β-globinre2位點(diǎn))進(jìn)行切割時(shí),對(duì)與sgrna互補(bǔ)的dna鏈進(jìn)行切割時(shí),是在pam上游3bp處進(jìn)行切割,而對(duì)與sgrna非互補(bǔ)dna鏈進(jìn)行切割時(shí),是在pam(agg)上游5bp處進(jìn)行突出末端切割,從而產(chǎn)生了突出斷裂末端u5。突出斷裂末端u5在細(xì)胞修復(fù)系統(tǒng)的作用下產(chǎn)生dna片段重復(fù)時(shí),導(dǎo)致了dna片段重復(fù)連接接頭處“gc”堿基的加入。而當(dāng)g915f這個(gè)cas9核酸酶在sgrna1的介導(dǎo)下對(duì)基因組dna片段(β-globinre2位點(diǎn))進(jìn)行切割時(shí),對(duì)與sgrna互補(bǔ)的dna鏈進(jìn)行切割時(shí),是在pam上游3bp處進(jìn)行切割,對(duì)與sgrna非互補(bǔ)dna鏈進(jìn)行切割時(shí),是在pam(agg)上游3bp處進(jìn)行鈍末端切割,從而產(chǎn)生了鈍斷裂末端u3。鈍斷裂末端u3在細(xì)胞修復(fù)系統(tǒng)的作用下產(chǎn)生dna片段重復(fù)時(shí),不會(huì)導(dǎo)致dna片段重復(fù)連接接頭處堿基的加入,而是產(chǎn)生與預(yù)期相符的精準(zhǔn)連接(joinedprecisely)。因此,我們認(rèn)為:在cas9核酸酶g915f的切割下,產(chǎn)生的斷裂末端中,鈍斷裂末端u3的占比=預(yù)期相符的精準(zhǔn)連接(joinedprecisely)的比例=68.76%。突出斷裂末端u4的比例=“c”堿基的加入比例=15.04%。突出斷裂末端u5的比例=“gc”堿基的加入比例=0.20%。但是,我們觀察到,除了與預(yù)期相符的精準(zhǔn)連接(joinedprecisely)、“c”堿基的加入、以及“gc”堿基的加入這三大類情況以外,還有一類隨機(jī)的堿基刪除(smalldeletion)。我們認(rèn)為這類隨機(jī)的堿基刪除(smalldeletion)是各斷裂末端(鈍斷裂末端u3/突出斷裂末端u4/突出斷裂末端u5)在細(xì)胞修復(fù)系統(tǒng)的作用下隨機(jī)產(chǎn)生的,各斷裂末端以均等的概率來(lái)產(chǎn)生堿基刪除(smalldeletion),各斷裂末端在細(xì)胞修復(fù)系統(tǒng)的作用下所產(chǎn)生的堿基刪除(smalldeletion)的數(shù)量與各斷裂末端的數(shù)量成正比?;陔S機(jī)堿基刪除現(xiàn)象的存在,我們認(rèn)為,經(jīng)過(guò)測(cè)序獲得的各斷裂末端的實(shí)測(cè)比例與其真實(shí)比例存在差距,需要進(jìn)行修正還原,即以各種斷裂末端的實(shí)測(cè)比例之和為基準(zhǔn),計(jì)算各斷裂末端的比例,以此作為該斷裂末端的占比。即對(duì)cas9核酸酶g915f的切割所產(chǎn)生的各斷裂末端的占比進(jìn)行標(biāo)準(zhǔn)化計(jì)算,鈍斷裂末端u3的占比為81.86%【計(jì)算方法為:68.76%÷(68.76%+15.04%+0.20%)】。突出斷裂末端u4的比例為17.90%【計(jì)算方法為:15.04%÷(68.76%+15.04%+0.20%)】。突出斷裂末端u5的比例為0.24%【計(jì)算方法為:0.20%÷(68.76%+15.04%+0.20%)】。亦即,cas9核酸酶g915f在sgrna1的介導(dǎo)下對(duì)基因組dna片段進(jìn)行的切割方式中,u3鈍末端切割的比例為81.86%,u4突出末端切割的比例為17.90%,u5突出末端切割的比例為0.24%。參照上述方法,再計(jì)算野生型cas9核酸酶(簡(jiǎn)稱cas9wt,wt)在sgrna1的介導(dǎo)下對(duì)基因組dna片段進(jìn)行的切割方式中,u3鈍末端切割的占比x1、u4突出末端切割x2、u5突出末端切割的占比x3。結(jié)果,如圖2d和下表2-1所示:表2-1可見(jiàn),在sgrna1的介導(dǎo)下,相比于spcas9核酸酶(cas9wt),g915f這個(gè)cas9核酸酶突變體對(duì)與sgrna1非互補(bǔ)的dna鏈進(jìn)行切割時(shí),在pam上游4bp處進(jìn)行切割的比例明顯提高(u4),在pam上游3bp處進(jìn)行切割的比例減少(u3)。如圖2e所示,利用高通量測(cè)序技術(shù)檢測(cè)dna片段刪除連接接頭的情況,除了與預(yù)期相符的精準(zhǔn)連接(joinedprecisely)以外,還存在與預(yù)期的精準(zhǔn)連接相比,刪除連接接頭處加入了“t”堿基、“at”堿基、“cat”堿基的情況。選用不同的cas9核酸酶時(shí),檢測(cè)到的與預(yù)期相符的精準(zhǔn)連接(joinedprecisely)、“+t”堿基、“+at”堿基、“+cat”堿基的占比不同。以選用g915f這個(gè)cas9核酸酶為例,檢測(cè)到與預(yù)期相符的精準(zhǔn)連接(joinedprecisely)的占比為14.77%,“+t”堿基的占比為17.77%,“+at”堿基的占比為40.39%,“+cat”堿基的占比為2.09%。鑒于dna片段刪除連接接頭處檢測(cè)到存在“t”堿基的加入(與預(yù)期的精準(zhǔn)連接相比),我們推測(cè)dna片段刪除連接接頭處加入的“t”堿基是來(lái)源于模版dna(β-globinre2位點(diǎn))上的pam(tgg)上游4bp處的堿基。并且,進(jìn)一步推測(cè)g915f這個(gè)cas9核酸酶在sgrna2的介導(dǎo)下對(duì)基因組dna片段(β-globinre2位點(diǎn))進(jìn)行切割時(shí),對(duì)與sgrna互補(bǔ)的dna鏈進(jìn)行切割時(shí),是在pam上游3bp處進(jìn)行切割,而對(duì)與sgrna非互補(bǔ)dna鏈進(jìn)行切割時(shí),則是在pam(tgg)上游4bp處進(jìn)行突出末端切割,從而產(chǎn)生了突出斷裂末端d4。突出斷裂末端d4在細(xì)胞修復(fù)系統(tǒng)的作用下產(chǎn)生dna片段刪除時(shí),導(dǎo)致了dna片段刪除連接接頭處“t”堿基的加入。同理,鑒于dna片段刪除連接接頭處檢測(cè)到存在“at”堿基的加入(與預(yù)期的精準(zhǔn)連接相比),我們推測(cè)dna片段刪除連接接頭處加入的“at”堿基是來(lái)源于模版dna(β-globinre2位點(diǎn))上的pam(tgg)上游4bp和5bp處的堿基。進(jìn)一步推測(cè)g915f這個(gè)cas9核酸酶在sgrna2的介導(dǎo)下對(duì)基因組dna片段(β-globinre2位點(diǎn))進(jìn)行切割時(shí),對(duì)與sgrna互補(bǔ)的dna鏈進(jìn)行切割時(shí),是在pam上游3bp處進(jìn)行切割,而對(duì)與sgrna非互補(bǔ)dna鏈進(jìn)行切割時(shí),是在pam(tgg)上游5bp處進(jìn)行突出末端切割,從而產(chǎn)生了突出斷裂末端d5。突出斷裂末端d5在細(xì)胞修復(fù)系統(tǒng)的作用下產(chǎn)生dna片段刪除時(shí),導(dǎo)致了dna片段刪除連接接頭處“at”堿基的加入。同理,鑒于dna片段刪除連接接頭處檢測(cè)到存在“cat”堿基的加入(與預(yù)期的精準(zhǔn)連接相比),我們推測(cè)dna片段刪除連接接頭處加入的“cat”堿基是來(lái)源于模版dna(β-globinre2位點(diǎn))上的pam(tgg)上游4bp、5bp、6bp處的堿基。進(jìn)一步推測(cè)g915f這個(gè)cas9核酸酶在sgrna2的向?qū)聦?duì)基因組dna片段(β-globinre2位點(diǎn))進(jìn)行切割時(shí),對(duì)與sgrna互補(bǔ)的dna鏈進(jìn)行切割時(shí),是在pam上游3bp處進(jìn)行切割,而對(duì)與sgrna非互補(bǔ)dna鏈進(jìn)行切割時(shí),是在pam(tgg)上游6bp處進(jìn)行突出末端切割,從而產(chǎn)生了突出斷裂末端d6。突出斷裂末端d5在細(xì)胞修復(fù)系統(tǒng)的作用下產(chǎn)生dna片段刪除時(shí),導(dǎo)致了dna片段刪除連接接頭處“cat”堿基的加入。而當(dāng)g915f這個(gè)cas9核酸酶在sgrna2的介導(dǎo)下對(duì)基因組dna片段(β-globinre2位點(diǎn))進(jìn)行切割時(shí),對(duì)與sgrna互補(bǔ)的dna鏈進(jìn)行切割時(shí),是在pam上游3bp處進(jìn)行切割,對(duì)與sgrna非互補(bǔ)dna鏈進(jìn)行切割時(shí),是在pam(tgg)上游3bp處進(jìn)行鈍末端切割,從而產(chǎn)生了鈍斷裂末端d3。鈍斷裂末端d3在細(xì)胞修復(fù)系統(tǒng)的作用下產(chǎn)生dna片段刪除時(shí),不會(huì)導(dǎo)致dna片段刪除連接接頭處堿基的加入,而是產(chǎn)生與預(yù)期相符的精準(zhǔn)連接(joinedprecisely)。因此,我們認(rèn)為:在cas9核酸酶g915f的切割下,產(chǎn)生的斷裂末端中,鈍斷裂末端d3的占比=預(yù)期相符的精準(zhǔn)連接(joinedprecisely)的占比=14.77%。突出斷裂末端d4的占比=“t”堿基的加入占比=17.77%。突出斷裂末端d5的占比=“at”堿基的加入占比=40.39%。突出斷裂末端d6的占比=“cat”堿基的加入占比=2.09%。但是,我們觀察到,除了與預(yù)期相符的精準(zhǔn)連接(joinedprecisely)、dna片段刪除連接接頭處加入了“t”堿基、“+at”堿基、“+cat”堿基這四大類情況以外,還有一類隨機(jī)的堿基刪除(smalldeletion)。我們認(rèn)為這類隨機(jī)的堿基刪除(smalldeletion)是各斷裂末端(鈍斷裂末端d3/突出斷裂末端d4/突出斷裂末端d5/突出斷裂末端d6)在細(xì)胞修復(fù)系統(tǒng)的作用下隨機(jī)產(chǎn)生的,各斷裂末端以均等的概率來(lái)產(chǎn)生堿基刪除(smalldeletion),各斷裂末端在細(xì)胞修復(fù)系統(tǒng)的作用下所產(chǎn)生的堿基刪除(smalldeletion)的數(shù)量與各斷裂末端的數(shù)量成正比?;陔S機(jī)堿基刪除現(xiàn)象的存在,我們認(rèn)為,經(jīng)過(guò)測(cè)序獲得的各斷裂末端的實(shí)測(cè)比例與其真實(shí)比例存在差距,需要進(jìn)行修正還原,即以各種斷裂末端的實(shí)測(cè)比例之和為基準(zhǔn),計(jì)算各斷裂末端的比例,以此作為該斷裂末端的占比。即對(duì)cas9核酸酶g915f的切割所產(chǎn)生的各斷裂末端的占比進(jìn)行標(biāo)準(zhǔn)化計(jì)算,鈍斷裂末端d3的占比為19.68%【計(jì)算方法為:14.77%÷(14.77%+17.77%+40.39%+2.09%)】。突出斷裂末端d4的比例為23.69%【計(jì)算方法為:17.77%÷(14.77%+17.77%+40.39%+2.09%)】。突出斷裂末端d5的比例為53.83%【計(jì)算方法為:40.39%÷(14.77%+17.77%+40.39%+2.09%)】。突出斷裂末端d6的比例為2.79%【計(jì)算方法為:2.09%÷(14.77%+17.77%+40.39%+2.09%)】。亦即,cas9核酸酶g915f在sgrna2的介導(dǎo)下對(duì)基因組dna片段進(jìn)行的切割方式中,d3鈍末端切割的占比為19.68%,d4突出末端切割的占比為23.69%,d5突出末端切割的占比為53.83%,d6突出末端切割的占比為2.79%。參照上述方法,計(jì)算出野生型cas9核酸酶在sgrna2的介導(dǎo)下對(duì)基因組dna片段進(jìn)行的切割方式中,d3鈍末端切割的占比y1、d4突出末端切割的占比y2、d5突出末端切割的占比y3、d6突出末端切割的占比y4。結(jié)果如圖2f和表2-2所示:表2-2可見(jiàn),在sgrna2的介導(dǎo)下,相比于spcas9核酸酶(cas9wt),g915f突變體對(duì)基因組dna片段中與sgrna2非互補(bǔ)的dna鏈進(jìn)行切割時(shí),在pam上游5bp處進(jìn)行切割的比例明顯提高。參照實(shí)施例1的方法,根據(jù)cas9核酸酶在sgrna1和sgrna2的介導(dǎo)下分別對(duì)基因組dna片段進(jìn)行切割的方式比例,預(yù)測(cè)產(chǎn)生的斷裂末端的序列,進(jìn)而推算出dna片段反轉(zhuǎn)下游連接接頭處的堿基加入情況及比例。結(jié)果如圖2g所示,推算結(jié)果與實(shí)驗(yàn)檢測(cè)到的堿基加入比例相近。更進(jìn)一步證實(shí)了cas9核酸酶在sgrna組合的介導(dǎo)下,可以在pam上游3bp處到更遠(yuǎn)堿基處切割非互補(bǔ)dna鏈。此外,還將本發(fā)明的cas9核酸酶突變體cas9-g915f及對(duì)照突變體k775a、r778a、e779a、k918p與針對(duì)stm位點(diǎn)(β-globinre1)的兩個(gè)sgrnas一起轉(zhuǎn)染人胚腎hek293t細(xì)胞,轉(zhuǎn)染48小時(shí)后收集基因組dna,利用高通量測(cè)序引物進(jìn)行pcr擴(kuò)增dna片段刪除、反轉(zhuǎn)和重復(fù),建庫(kù)進(jìn)行高通量測(cè)序。根據(jù)dna片段刪除和重復(fù)的連接接頭堿基加入情況,計(jì)算這些突變體在兩個(gè)sgrnas的向?qū)聦?duì)基因組dna片段進(jìn)行切割的切割方式比例。針對(duì)stm位點(diǎn)(β-globinre1)的sgrnas靶向序列:β-globinre1sgrna1:gattgttgttgccttggagtg(seqidno.19);β-globinre1sgrna2:gctggtcccctggtaacctgg(seqidno.20);正反向脫氧寡核苷酸:β-globinre1sgrna1f:accgattgttgttgccttggagtg(seqidno.21);β-globinre1sgrna1r:aaaccactccaaggcaacaacaat(seqidno.22);β-globinre1sgrna2f:accgctggtcccctggtaacctgg(seqidno.23);β-globinre1sgrna2r:aaacccaggttaccaggggaccag(seqidno.24);高通量引物:hiseq-hstm-af1:aatgatacggcgaccaccgagatctacactctttccctacacgacgctcttccgatcttgcttagagccaggactaattgc(seqidno.25);hiseq-hstm-ar2:aatgatacggcgaccaccgagatctacactctttccctacacgacgctcttccgatcttgggtgtagaaatgagcaaataagt(seqidno.26);hiseq-hstm-2f:caagcagaagacggcatacgagatgatcgtgtgactggagttcagacgtgtgctcttccgatctagattgagttctgtttgtttcatctac(seqidno.27);hiseq-hstm-2r:caagcagaagacggcatacgagatagtcaagtgactggagttcagacgtgtgctcttccgatctcagctctgcctgaaaggagtc(seqidno.28)。如圖3a和3b所示,與野生型spcas9核酸酶(簡(jiǎn)稱cas9wt)相比,對(duì)照突變體k775a、r778a、e779a和k918p在sgrna1和sgrna2的介導(dǎo)下對(duì)基因組dna片段進(jìn)行切割的方式?jīng)]有明顯的改變;而cas9核酸酶突變體cas9-g915f與野生型spcas9核酸酶(簡(jiǎn)稱cas9wt)相比,在sgrna1和sgrna2的介導(dǎo)下對(duì)基因組dna片段進(jìn)行切割的方式發(fā)生了明顯的改變。綜上所述,本發(fā)明的cas9核酸酶(cas9-g915f)與野生型cas9核酸酶相比,對(duì)目的基因組dna片段進(jìn)行切割時(shí)產(chǎn)生的突出斷裂末端與鈍斷裂末端的比例不同。采用本發(fā)明的cas9核酸酶(cas9-g915f)可以實(shí)現(xiàn)對(duì)對(duì)目的基因組dna片段特定位置的切割并產(chǎn)生突出斷裂末端,以補(bǔ)平連接的方式可加入與突出斷裂末端互補(bǔ)的堿基,進(jìn)而可實(shí)現(xiàn)特定位置的精準(zhǔn)dna片段編輯。本申請(qǐng)的參考文獻(xiàn)如下:1.stamatoyannopoulos,ja.(2012).whatdoesourgenomeencode?genomeres,22:1602-1611.2.theencodeprojectconsortium.(2012).anintegratedencyclopediaofdnaelementsinthehumangenome.nature,489:57-74.3.banerji,j,lolson,andwschaffner.(1983).alymphocyte-specificcellularenhancerislocateddownstreamofthejoiningregioninimmunoglobulinheavychaingenes.cell,33:729-740.4.zhang,t,phaws,andqwu.(2004).multiplevariablefirstexons:amechanismforcell-andtissue-specificgeneregulation.genomeres,14:79-89.5.neph,s,etal.(2012).anexpansivehumanregulatorylexiconencodedintranscriptionfactorfootprints.nature,489:83-90.6.shen,y,etal.(2012).amapofthecis-regulatorysequencesinthemousegenome.nature,488:116-120.7.thurman,re,etal.(2012).theaccessiblechromatinlandscapeofthehumangenome.nature,489:75-82.8.delaat,wanddduboule.(2013).topologyofmammaliandevelopmentalenhancersandtheirregulatorylandscapes.nature,502:499-506.9.mcclintock,b.(1950).theoriginandbehaviorofmutablelociinmaize.procnatlacadsciusa,36:344-355.10.mcclintock,b.(1984).thesignificanceofresponsesofthegenometochallenge.science,226:792-801.11.brinster,rl,etal.(1981).somaticexpressionofherpesthymidinekinaseinmicefollowinginjectionofafusiongeneintoeggs.cell,27:223-231.12.harbers,k,djahner,andrjaenisch.(1981).microinjectionofclonedretroviralgenomesintomousezygotes:integrationandexpressionintheanimal.nature,293:540-542.13.gordon,jw,etal.(1980).genetictransformationofmouseembryosbymicroinjectionofpurifieddna.procnatlacadsciusa,77:7380-7384.14.palmiter,rd,etal.(1982).dramaticgrowthofmicethatdevelopfromeggsmicroinjectedwithmetallothionein-growthhormonefusiongenes.nature,300:611-615.15.capecchi,mr.(2005).genetargetinginmice:functionalanalysisofthemammaliangenomeforthetwenty-firstcentury.natrevgenet,6:507-512.16.carroll,d.(2014).genomeengineeringwithtargetablenucleases.annurevbiochem,83:409-439.17.smithies,o,etal.(1985).insertionofdnasequencesintothehumanchromosomalbeta-globinlocusbyhomologousrecombination.nature,317:230-234.18.thomas,krandmrcapecchi.(1986).introductionofhomologousdnasequencesintomammaliancellsinducesmutationsinthecognategene.nature,324:34-38.19.zheng,b,etal.(2000).engineeringmousechromosomeswithcre-loxp:range,efficiency,andsomaticapplications.molcellbiol,20:648-655.20.wu,s,etal.(2007).towardsimplerandfastergenome-widemutagenesisinmice.natgenet,39:922-930.21.gupta,a,etal.(2013).targetedchromosomaldeletionsandinversionsinzebrafish.genomeres,23:1008-1017.22.xiao,a,etal.(2013).chromosomaldeletionsandinversionsmediatedbytalensandcrispr/casinzebrafish.nucleicacidsres,41:e141.23.kraft,k,etal.(2015).deletions,inversions,duplications:engineeringofstructuralvariantsusingcrispr/casinmice.cellrep,10:833-839.24.wu,s,etal.(2008).aprotocolforconstructinggenetargetingvectors:generatingknockoutmiceforthecadherinfamilyandbeyond.natureprotocol,3:1056-1076.25.jinek,m,etal.(2012).aprogrammabledual-rna-guideddnaendonucleaseinadaptivebacterialimmunity.science,337:816-821.26.cong,l,etal.(2013).multiplexgenomeengineeringusingcrispr/cassystems.science,339:819-823.27.mali,p,etal.(2013).rna-guidedhumangenomeengineeringviacas9.science,339:823-826.28.li,j,etal.(2015).efficientinversionsandduplicationsofmammalianregulatorydnaelementsandgeneclustersbycrispr/cas9.jmolcellbiol,7:284-298.29.sartori,aa,etal.(2007).humanctippromotesdnaendresection.nature,450:509-514.30.anand,r,etal.(2016).phosphorylatedctipfunctionsasaco-factorofthemre11-rad50-nbs1endonucleaseindnaendresection.molcell,64:940-950.31.li,j,jshou,andqwu.(2015).dnafragmenteditingofgenomesbycrispr/cas9.hereditas,37:992-1002.32.huang,handqwu.(2016).crisprdoublecuttingthroughthelabyrinthinearchitectureof3dgenomes.jgenetgenomics,43:273-288.33.guo,y,etal.(2015).crisprinversionofctcfsitesaltersgenometopologyandenhancer/promoterfunction.cell,162:900-910.以上所述,僅為本發(fā)明的較佳實(shí)施例,并非對(duì)本發(fā)明任何形式上和實(shí)質(zhì)上的限制,應(yīng)當(dāng)指出,對(duì)于本
技術(shù)領(lǐng)域:
:的普通技術(shù)人員,在不脫離本發(fā)明方法的前提下,還將可以做出若干改進(jìn)和補(bǔ)充,這些改進(jìn)和補(bǔ)充也應(yīng)視為本發(fā)明的保護(hù)范圍。凡熟悉本專業(yè)的技術(shù)人員,在不脫離本發(fā)明的精神和范圍的情況下,當(dāng)可利用以上所揭示的技術(shù)內(nèi)容而做出的些許更動(dòng)、修飾與演變的等同變化,均為本發(fā)明的等效實(shí)施例;同時(shí),凡依據(jù)本發(fā)明的實(shí)質(zhì)技術(shù)對(duì)上述實(shí)施例所作的任何等同變化的更動(dòng)、修飾與演變,均仍屬于本發(fā)明的技術(shù)方案的范圍內(nèi)。sequencelisting<110>上海交通大學(xué)<120>一種cas9核酸酶g915f及其用途<130>171284<160>28<170>patentinversion3.3<210>1<211>20<212>dna<213>artificial<220><223>hs51re1sgrna1<400>1gccacacatccaaggctgac20<210>2<211>21<212>dna<213>artificial<220><223>hs51re1sgrna2<400>2gagatttggggcgtcaggaag21<210>3<211>77<212>dna<213>artificial<220><223>hiseq-hhs51-af<400>3atgatacggcgaccaccgagatctacactctttccctacacgacgctcttccgatctgca60aggagatccgtgtcgtc77<210>4<211>82<212>dna<213>artificial<220><223>hiseq-hs51-ara<400>4aatgatacggcgaccaccgagatctacactctttccctacacgacgctcttccgatctaa60ggatgttgtggaaggcgagcag82<210>5<211>87<212>dna<213>artificial<220><223>hiseq-hs51-bfa<400>5caagcagaagacggcatacgagatggacgggtgactggagttcagacgtgtgctcttccg60atctctttacatgacagcttccggtag87<210>6<211>89<212>dna<213>artificial<220><223>hiseq-hhs51-br<400>6caagcagaagacggcatacgagatttgactgtgactggagttcagacgtgtgctcttccg60atcttttttggctaacaacatagtgcttc89<210>7<211>1401<212>prt<213>artificial<220><223>spcas9<400>7metalaprolyslyslysarglysvalglyilehisglyvalproala151015alametasplyslystyrserileglyleuaspileglythrasnser202530valglytrpalavalilethraspglutyrlysvalproserlyslys354045phelysvalleuglyasnthrasparghisserilelyslysasnleu505560ileglyalaleuleupheaspserglygluthralaglualathrarg65707580leulysargthralaargargargtyrthrargarglysasnargile859095cystyrleuglngluilepheserasnglumetalalysvalaspasp100105110serphephehisargleuglugluserpheleuvalglugluasplys115120125lyshisgluarghisproilepheglyasnilevalaspgluvalala130135140tyrhisglulystyrprothriletyrhisleuarglyslysleuval145150155160aspserthrasplysalaaspleuargleuiletyrleualaleuala165170175hismetilelyspheargglyhispheleuilegluglyaspleuasn180185190proaspasnseraspvalasplysleupheileglnleuvalglnthr195200205tyrasnglnleupheglugluasnproileasnalaserglyvalasp210215220alalysalaileleuseralaargleuserlysserargargleuglu225230235240asnleuilealaglnleuproglyglulyslysasnglyleuphegly245250255asnleuilealaleuserleuglyleuthrproasnphelysserasn260265270pheaspleualagluaspalalysleuglnleuserlysaspthrtyr275280285aspaspaspleuaspasnleuleualaglnileglyaspglntyrala290295300aspleupheleualaalalysasnleuseraspalaileleuleuser305310315320aspileleuargvalasnthrgluilethrlysalaproleuserala325330335sermetilelysargtyraspgluhishisglnaspleuthrleuleu340345350lysalaleuvalargglnglnleuproglulystyrlysgluilephe355360365pheaspglnserlysasnglytyralaglytyrileaspglyglyala370375380serglnglugluphetyrlyspheilelysproileleuglulysmet385390395400aspglythrglugluleuleuvallysleuasnarggluaspleuleu405410415arglysglnargthrpheaspasnglyserileprohisglnilehis420425430leuglygluleuhisalaileleuargargglngluaspphetyrpro435440445pheleulysaspasnargglulysileglulysileleuthrphearg450455460ileprotyrtyrvalglyproleualaargglyasnserargpheala465470475480trpmetthrarglysserglugluthrilethrprotrpasnpheglu485490495gluvalvalasplysglyalaseralaglnserpheilegluargmet500505510thrasnpheasplysasnleuproasnglulysvalleuprolyshis515520525serleuleutyrglutyrphethrvaltyrasngluleuthrlysval530535540lystyrvalthrgluglymetarglysproalapheleuserglyglu545550555560glnlyslysalailevalaspleuleuphelysthrasnarglysval565570575thrvallysglnleulysgluasptyrphelyslysileglucysphe580585590aspservalgluileserglyvalgluaspargpheasnalaserleu595600605glythrtyrhisaspleuleulysileilelysasplysasppheleu610615620aspasnglugluasngluaspileleugluaspilevalleuthrleu625630635640thrleuphegluaspargglumetileglugluargleulysthrtyr645650655alahisleupheaspasplysvalmetlysglnleulysargargarg660665670tyrthrglytrpglyargleuserarglysleuileasnglyilearg675680685asplysglnserglylysthrileleuasppheleulysseraspgly690695700phealaasnargasnphemetglnleuilehisaspaspserleuthr705710715720phelysgluaspileglnlysalaglnvalserglyglnglyaspser725730735leuhisgluhisilealaasnleualaglyserproalailelyslys740745750glyileleuglnthrvallysvalvalaspgluleuvallysvalmet755760765glyarghislysprogluasnilevalileglumetalaarggluasn770775780glnthrthrglnlysglyglnlysasnserarggluargmetlysarg785790795800ileglugluglyilelysgluleuglyserglnileleulysgluhis805810815provalgluasnthrglnleuglnasnglulysleutyrleutyrtyr820825830leuglnasnglyargaspmettyrvalaspglngluleuaspileasn835840845argleuserasptyraspvalasphisilevalproglnserpheleu850855860lysaspaspserileaspasnlysvalleuthrargserasplysasn865870875880argglylysseraspasnvalproserglugluvalvallyslysmet885890895lysasntyrtrpargglnleuleuasnalalysleuilethrglnarg900905910lyspheaspasnleuthrlysalagluargglyglyleusergluleu915920925asplysalaglypheilelysargglnleuvalgluthrargglnile930935940thrlyshisvalalaglnileleuaspserargmetasnthrlystyr945950955960aspgluasnasplysleuilearggluvallysvalilethrleulys965970975serlysleuvalseraspphearglysasppheglnphetyrlysval980985990arggluileasnasntyrhishisalahisaspalatyrleuasnala99510001005valvalglythralaleuilelyslystyrprolysleugluser101010151020gluphevaltyrglyasptyrlysvaltyraspvalarglysmet102510301035ilealalyssergluglngluileglylysalathralalystyr104010451050phephetyrserasnilemetasnphephelysthrgluilethr105510601065leualaasnglygluilearglysargproleuilegluthrasn107010751080glygluthrglygluilevaltrpasplysglyargasppheala108510901095thrvalarglysvalleusermetproglnvalasnilevallys110011051110lysthrgluvalglnthrglyglypheserlysgluserileleu111511201125prolysargasnserasplysleuilealaarglyslysasptrp113011351140aspprolyslystyrglyglypheaspserprothrvalalatyr114511501155servalleuvalvalalalysvalglulysglylysserlyslys116011651170leulysservallysgluleuleuglyilethrilemetgluarg117511801185serserpheglulysasnproileasppheleuglualalysgly119011951200tyrlysgluvallyslysaspleuileilelysleuprolystyr120512101215serleuphegluleugluasnglyarglysargmetleualaser122012251230alaglygluleuglnlysglyasngluleualaleuproserlys123512401245tyrvalasnpheleutyrleualaserhistyrglulysleulys125012551260glyserprogluaspasngluglnlysglnleuphevalglugln126512701275hislyshistyrleuaspgluileilegluglnilesergluphe128012851290serlysargvalileleualaaspalaasnleuasplysvalleu129513001305seralatyrasnlyshisargasplysproilearggluglnala131013151320gluasnileilehisleuphethrleuthrasnleuglyalapro132513301335alaalaphelystyrpheaspthrthrileasparglysargtyr134013451350thrserthrlysgluvalleuaspalathrleuilehisglnser135513601365ilethrglyleutyrgluthrargileaspleuserglnleugly137013751380glyasplysargproalaalathrlyslysalaglyglnalalys138513901395lyslyslys1400<210>8<211>4206<212>dna<213>artificial<220><223>spcas9<400>8atggccccaaagaagaagcggaaggtcggtatccacggtgtcccagcagccatggacaag60aagtactccattgggctcgatatcggcacaaacagcgtcggctgggccgtcattacggac120gagtacaaggtgccgagcaaaaaattcaaagttctgggcaataccgatcgccacagcata180aagaagaacctcattggcgccctcctgttcgactccggggagacggccgaagccacgcgg240ctcaaaagaacagcacggcgcagatatacccgcagaaagaatcggatctgctacctgcag300gagatctttagtaatgagatggctaaggtggatgactctttcttccataggctggaggag360tcctttttggtggaggaggataaaaagcacgagcgccacccaatctttggcaatatcgtg420gacgaggtggcgtaccatgaaaagtacccaaccatatatcatctgaggaagaagcttgta480gacagtactgataaggctgacttgcggttgatctatctcgcgctggcgcatatgatcaaa540tttcggggacacttcctcatcgagggggacctgaacccagacaacagcgatgtcgacaaa600ctctttatccaactggttcagacttacaatcagcttttcgaagagaacccgatcaacgca660tccggagttgacgccaaagcaatcctgagcgctaggctgtccaaatcccggcggctcgaa720aacctcatcgcacagctccctggggagaagaagaacggcctgtttggtaatcttatcgcc780ctgtcactcgggctgacccccaactttaaatctaacttcgacctggccgaagatgccaag840cttcaactgagcaaagacacctacgatgatgatctcgacaatctgctggcccagatcggc900gaccagtacgcagacctttttttggcggcaaagaacctgtcagacgccattctgctgagt960gatattctgcgagtgaacacggagatcaccaaagctccgctgagcgctagtatgatcaag1020cgctatgatgagcaccaccaagacttgactttgctgaaggcccttgtcagacagcaactg1080cctgagaagtacaaggaaattttcttcgatcagtctaaaaatggctacgccggatacatt1140gacggcggagcaagccaggaggaattttacaaatttattaagcccatcttggaaaaaatg1200gacggcaccgaggagctgctggtaaagcttaacagagaagatctgttgcgcaaacagcgc1260actttcgacaatggaagcatcccccaccagattcacctgggcgaactgcacgctatactc1320aggcggcaagaggatttctacccctttttgaaagataacagggaaaagattgagaaaatc1380ctcacatttcggataccctactatgtaggccccctcgcccggggaaattccagattcgcg1440tggatgactcgcaaatcagaagagaccatcactccctggaacttcgaggaagtcgtggat1500aagggggcctctgcccagtccttcatcgaaaggatgactaactttgataaaaatctgcct1560aacgaaaaggtgcttcctaaacactctctgctgtacgagtacttcacagtttataacgag1620ctcaccaaggtcaaatacgtcacagaagggatgagaaagccagcattcctgtctggagag1680cagaagaaagctatcgtggacctcctcttcaagacgaaccggaaagttaccgtgaaacag1740ctcaaagaagactatttcaaaaagattgaatgtttcgactctgttgaaatcagcggagtg1800gaggatcgcttcaacgcatccctgggaacgtatcacgatctcctgaaaatcattaaagac1860aaggacttcctggacaatgaggagaacgaggacattcttgaggacattgtcctcaccctt1920acgttgtttgaagatagggagatgattgaagaacgcttgaaaacttacgctcatctcttc1980gacgacaaagtcatgaaacagctcaagaggcgccgatatacaggatgggggcggctgtca2040agaaaactgatcaatgggatccgagacaagcagagtggaaagacaatcctggattttctt2100aagtccgatggatttgccaaccggaacttcatgcagttgatccatgatgactctctcacc2160tttaaggaggacatccagaaagcacaagtttctggccagggggacagtcttcacgagcac2220atcgctaatcttgcaggtagcccagctatcaaaaagggaatactgcagaccgttaaggtc2280gtggatgaactcgtcaaagtaatgggaaggcataagcccgagaatatcgttatcgagatg2340gcccgagagaaccaaactacccagaagggacagaagaacagtagggaaaggatgaagagg2400attgaagagggtataaaagaactggggtcccaaatccttaaggaacacccagttgaaaac2460acccagcttcagaatgagaagctctacctgtactacctgcagaacggcagggacatgtac2520gtggatcaggaactggacatcaatcggctctccgactacgacgtggatcatatcgtgccc2580cagtcttttctcaaagatgattctattgataataaagtgttgacaagatccgataaaaat2640agagggaagagtgataacgtcccctcagaagaagttgtcaagaaaatgaaaaattattgg2700cggcagctgctgaacgccaaactgatcacacaacggaagttcgataatctgactaaggct2760gaacgaggtggcctgtctgagttggataaagcaggcttcatcaaaaggcagcttgttgag2820acacgccagatcaccaagcacgtggcccaaattctcgattcacgcatgaacaccaagtac2880gatgaaaatgacaaactgattcgagaggtgaaagttattactctgaagtctaagctggtc2940tcagatttcagaaaggactttcagttttataaggtgagagagatcaacaattaccaccat3000gcgcatgatgcctacctgaatgcagtggtaggcactgcacttatcaaaaaatatcccaag3060cttgaatctgaatttgtttacggagactataaagtgtacgatgttaggaaaatgatcgca3120aagtctgagcaggaaataggcaaggccaccgctaagtacttcttttacagcaatattatg3180aattttttcaagaccgagattacactggccaatggagagattcggaagcgaccacttatc3240gaaacaaacggagaaacaggagaaatcgtgtgggacaagggtagggatttcgcgacagtc3300cggaaggtcctgtccatgccgcaggtgaacatcgttaaaaagaccgaagtacagaccgga3360ggcttctccaaggaaagtatcctcccgaaaaggaacagcgacaagctgatcgcacgcaaa3420aaagattgggaccccaagaaatacggcggattcgattctcctacagtcgcttacagtgta3480ctggttgtggccaaagtggagaaagggaagtctaaaaaactcaaaagcgtcaaggaactg3540ctgggcatcacaatcatggagcgatcaagcttcgaaaaaaaccccatcgactttctcgag3600gcgaaaggatataaagaggtcaaaaaagacctcatcattaagcttcccaagtactctctc3660tttgagcttgaaaacggccggaaacgaatgctcgctagtgcgggcgagctgcagaaaggt3720aacgagctggcactgccctctaaatacgttaatttcttgtatctggccagccactatgaa3780aagctcaaagggtctcccgaagataatgagcagaagcagctgttcgtggaacaacacaaa3840cactaccttgatgagatcatcgagcaaataagcgaattctccaaaagagtgatcctcgcc3900gacgctaacctcgataaggtgctttctgcttacaataagcacagggataagcccatcagg3960gagcaggcagaaaacattatccacttgtttactctgaccaacttgggcgcgcctgcagcc4020ttcaagtacttcgacaccaccatagacagaaagcggtacacctctacaaaggaggtcctg4080gacgccacactgattcatcagtcaattacggggctctatgaaacaagaatcgacctctct4140cagctcggtggagacaagcgtcctgctgctactaagaaagctggtcaagctaagaaaaag4200aaataa4206<210>9<211>1401<212>prt<213>artificial<220><223>cas9-g915f<400>9metalaprolyslyslysarglysvalglyilehisglyvalproala151015alametasplyslystyrserileglyleuaspileglythrasnser202530valglytrpalavalilethraspglutyrlysvalproserlyslys354045phelysvalleuglyasnthrasparghisserilelyslysasnleu505560ileglyalaleuleupheaspserglygluthralaglualathrarg65707580leulysargthralaargargargtyrthrargarglysasnargile859095cystyrleuglngluilepheserasnglumetalalysvalaspasp100105110serphephehisargleuglugluserpheleuvalglugluasplys115120125lyshisgluarghisproilepheglyasnilevalaspgluvalala130135140tyrhisglulystyrprothriletyrhisleuarglyslysleuval145150155160aspserthrasplysalaaspleuargleuiletyrleualaleuala165170175hismetilelyspheargglyhispheleuilegluglyaspleuasn180185190proaspasnseraspvalasplysleupheileglnleuvalglnthr195200205tyrasnglnleupheglugluasnproileasnalaserglyvalasp210215220alalysalaileleuseralaargleuserlysserargargleuglu225230235240asnleuilealaglnleuproglyglulyslysasnglyleuphegly245250255asnleuilealaleuserleuglyleuthrproasnphelysserasn260265270pheaspleualagluaspalalysleuglnleuserlysaspthrtyr275280285aspaspaspleuaspasnleuleualaglnileglyaspglntyrala290295300aspleupheleualaalalysasnleuseraspalaileleuleuser305310315320aspileleuargvalasnthrgluilethrlysalaproleuserala325330335sermetilelysargtyraspgluhishisglnaspleuthrleuleu340345350lysalaleuvalargglnglnleuproglulystyrlysgluilephe355360365pheaspglnserlysasnglytyralaglytyrileaspglyglyala370375380serglnglugluphetyrlyspheilelysproileleuglulysmet385390395400aspglythrglugluleuleuvallysleuasnarggluaspleuleu405410415arglysglnargthrpheaspasnglyserileprohisglnilehis420425430leuglygluleuhisalaileleuargargglngluaspphetyrpro435440445pheleulysaspasnargglulysileglulysileleuthrphearg450455460ileprotyrtyrvalglyproleualaargglyasnserargpheala465470475480trpmetthrarglysserglugluthrilethrprotrpasnpheglu485490495gluvalvalasplysglyalaseralaglnserpheilegluargmet500505510thrasnpheasplysasnleuproasnglulysvalleuprolyshis515520525serleuleutyrglutyrphethrvaltyrasngluleuthrlysval530535540lystyrvalthrgluglymetarglysproalapheleuserglyglu545550555560glnlyslysalailevalaspleuleuphelysthrasnarglysval565570575thrvallysglnleulysgluasptyrphelyslysileglucysphe580585590aspservalgluileserglyvalgluaspargpheasnalaserleu595600605glythrtyrhisaspleuleulysileilelysasplysasppheleu610615620aspasnglugluasngluaspileleugluaspilevalleuthrleu625630635640thrleuphegluaspargglumetileglugluargleulysthrtyr645650655alahisleupheaspasplysvalmetlysglnleulysargargarg660665670tyrthrglytrpglyargleuserarglysleuileasnglyilearg675680685asplysglnserglylysthrileleuasppheleulysseraspgly690695700phealaasnargasnphemetglnleuilehisaspaspserleuthr705710715720phelysgluaspileglnlysalaglnvalserglyglnglyaspser725730735leuhisgluhisilealaasnleualaglyserproalailelyslys740745750glyileleuglnthrvallysvalvalaspgluleuvallysvalmet755760765glyarghislysprogluasnilevalileglumetalaarggluasn770775780glnthrthrglnlysglyglnlysasnserarggluargmetlysarg785790795800ileglugluglyilelysgluleuglyserglnileleulysgluhis805810815provalgluasnthrglnleuglnasnglulysleutyrleutyrtyr820825830leuglnasnglyargaspmettyrvalaspglngluleuaspileasn835840845argleuserasptyraspvalasphisilevalproglnserpheleu850855860lysaspaspserileaspasnlysvalleuthrargserasplysasn865870875880argglylysseraspasnvalproserglugluvalvallyslysmet885890895lysasntyrtrpargglnleuleuasnalalysleuilethrglnarg900905910lyspheaspasnleuthrlysalagluargglyglyleusergluleu915920925asplysalaphepheilelysargglnleuvalgluthrargglnile930935940thrlyshisvalalaglnileleuaspserargmetasnthrlystyr945950955960aspgluasnasplysleuilearggluvallysvalilethrleulys965970975serlysleuvalseraspphearglysasppheglnphetyrlysval980985990arggluileasnasntyrhishisalahisaspalatyrleuasnala99510001005valvalglythralaleuilelyslystyrprolysleugluser101010151020gluphevaltyrglyasptyrlysvaltyraspvalarglysmet102510301035ilealalyssergluglngluileglylysalathralalystyr104010451050phephetyrserasnilemetasnphephelysthrgluilethr105510601065leualaasnglygluilearglysargproleuilegluthrasn107010751080glygluthrglygluilevaltrpasplysglyargasppheala108510901095thrvalarglysvalleusermetproglnvalasnilevallys110011051110lysthrgluvalglnthrglyglypheserlysgluserileleu111511201125prolysargasnserasplysleuilealaarglyslysasptrp113011351140aspprolyslystyrglyglypheaspserprothrvalalatyr114511501155servalleuvalvalalalysvalglulysglylysserlyslys116011651170leulysservallysgluleuleuglyilethrilemetgluarg117511801185serserpheglulysasnproileasppheleuglualalysgly119011951200tyrlysgluvallyslysaspleuileilelysleuprolystyr120512101215serleuphegluleugluasnglyarglysargmetleualaser122012251230alaglygluleuglnlysglyasngluleualaleuproserlys123512401245tyrvalasnpheleutyrleualaserhistyrglulysleulys125012551260glyserprogluaspasngluglnlysglnleuphevalglugln126512701275hislyshistyrleuaspgluileilegluglnilesergluphe128012851290serlysargvalileleualaaspalaasnleuasplysvalleu129513001305seralatyrasnlyshisargasplysproilearggluglnala131013151320gluasnileilehisleuphethrleuthrasnleuglyalapro132513301335alaalaphelystyrpheaspthrthrileasparglysargtyr134013451350thrserthrlysgluvalleuaspalathrleuilehisglnser135513601365ilethrglyleutyrgluthrargileaspleuserglnleugly137013751380glyasplysargproalaalathrlyslysalaglyglnalalys138513901395lyslyslys1400<210>10<211>4206<212>dna<213>artificial<220><223>cas9-g915f<400>10atggccccaaagaagaagcggaaggtcggtatccacggtgtcccagcagccatggacaag60aagtactccattgggctcgatatcggcacaaacagcgtcggctgggccgtcattacggac120gagtacaaggtgccgagcaaaaaattcaaagttctgggcaataccgatcgccacagcata180aagaagaacctcattggcgccctcctgttcgactccggggagacggccgaagccacgcgg240ctcaaaagaacagcacggcgcagatatacccgcagaaagaatcggatctgctacctgcag300gagatctttagtaatgagatggctaaggtggatgactctttcttccataggctggaggag360tcctttttggtggaggaggataaaaagcacgagcgccacccaatctttggcaatatcgtg420gacgaggtggcgtaccatgaaaagtacccaaccatatatcatctgaggaagaagcttgta480gacagtactgataaggctgacttgcggttgatctatctcgcgctggcgcatatgatcaaa540tttcggggacacttcctcatcgagggggacctgaacccagacaacagcgatgtcgacaaa600ctctttatccaactggttcagacttacaatcagcttttcgaagagaacccgatcaacgca660tccggagttgacgccaaagcaatcctgagcgctaggctgtccaaatcccggcggctcgaa720aacctcatcgcacagctccctggggagaagaagaacggcctgtttggtaatcttatcgcc780ctgtcactcgggctgacccccaactttaaatctaacttcgacctggccgaagatgccaag840cttcaactgagcaaagacacctacgatgatgatctcgacaatctgctggcccagatcggc900gaccagtacgcagacctttttttggcggcaaagaacctgtcagacgccattctgctgagt960gatattctgcgagtgaacacggagatcaccaaagctccgctgagcgctagtatgatcaag1020cgctatgatgagcaccaccaagacttgactttgctgaaggcccttgtcagacagcaactg1080cctgagaagtacaaggaaattttcttcgatcagtctaaaaatggctacgccggatacatt1140gacggcggagcaagccaggaggaattttacaaatttattaagcccatcttggaaaaaatg1200gacggcaccgaggagctgctggtaaagcttaacagagaagatctgttgcgcaaacagcgc1260actttcgacaatggaagcatcccccaccagattcacctgggcgaactgcacgctatactc1320aggcggcaagaggatttctacccctttttgaaagataacagggaaaagattgagaaaatc1380ctcacatttcggataccctactatgtaggccccctcgcccggggaaattccagattcgcg1440tggatgactcgcaaatcagaagagaccatcactccctggaacttcgaggaagtcgtggat1500aagggggcctctgcccagtccttcatcgaaaggatgactaactttgataaaaatctgcct1560aacgaaaaggtgcttcctaaacactctctgctgtacgagtacttcacagtttataacgag1620ctcaccaaggtcaaatacgtcacagaagggatgagaaagccagcattcctgtctggagag1680cagaagaaagctatcgtggacctcctcttcaagacgaaccggaaagttaccgtgaaacag1740ctcaaagaagactatttcaaaaagattgaatgtttcgactctgttgaaatcagcggagtg1800gaggatcgcttcaacgcatccctgggaacgtatcacgatctcctgaaaatcattaaagac1860aaggacttcctggacaatgaggagaacgaggacattcttgaggacattgtcctcaccctt1920acgttgtttgaagatagggagatgattgaagaacgcttgaaaacttacgctcatctcttc1980gacgacaaagtcatgaaacagctcaagaggcgccgatatacaggatgggggcggctgtca2040agaaaactgatcaatgggatccgagacaagcagagtggaaagacaatcctggattttctt2100aagtccgatggatttgccaaccggaacttcatgcagttgatccatgatgactctctcacc2160tttaaggaggacatccagaaagcacaagtttctggccagggggacagtcttcacgagcac2220atcgctaatcttgcaggtagcccagctatcaaaaagggaatactgcagaccgttaaggtc2280gtggatgaactcgtcaaagtaatgggaaggcataagcccgagaatatcgttatcgagatg2340gcccgagagaaccaaactacccagaagggacagaagaacagtagggaaaggatgaagagg2400attgaagagggtataaaagaactggggtcccaaatccttaaggaacacccagttgaaaac2460acccagcttcagaatgagaagctctacctgtactacctgcagaacggcagggacatgtac2520gtggatcaggaactggacatcaatcggctctccgactacgacgtggatcatatcgtgccc2580cagtcttttctcaaagatgattctattgataataaagtgttgacaagatccgataaaaat2640agagggaagagtgataacgtcccctcagaagaagttgtcaagaaaatgaaaaattattgg2700cggcagctgctgaacgccaaactgatcacacaacggaagttcgataatctgactaaggct2760gaacgaggtggcctgtctgagttggataaagcattcttcatcaaaaggcagcttgttgag2820acacgccagatcaccaagcacgtggcccaaattctcgattcacgcatgaacaccaagtac2880gatgaaaatgacaaactgattcgagaggtgaaagttattactctgaagtctaagctggtc2940tcagatttcagaaaggactttcagttttataaggtgagagagatcaacaattaccaccat3000gcgcatgatgcctacctgaatgcagtggtaggcactgcacttatcaaaaaatatcccaag3060cttgaatctgaatttgtttacggagactataaagtgtacgatgttaggaaaatgatcgca3120aagtctgagcaggaaataggcaaggccaccgctaagtacttcttttacagcaatattatg3180aattttttcaagaccgagattacactggccaatggagagattcggaagcgaccacttatc3240gaaacaaacggagaaacaggagaaatcgtgtgggacaagggtagggatttcgcgacagtc3300cggaaggtcctgtccatgccgcaggtgaacatcgttaaaaagaccgaagtacagaccgga3360ggcttctccaaggaaagtatcctcccgaaaaggaacagcgacaagctgatcgcacgcaaa3420aaagattgggaccccaagaaatacggcggattcgattctcctacagtcgcttacagtgta3480ctggttgtggccaaagtggagaaagggaagtctaaaaaactcaaaagcgtcaaggaactg3540ctgggcatcacaatcatggagcgatcaagcttcgaaaaaaaccccatcgactttctcgag3600gcgaaaggatataaagaggtcaaaaaagacctcatcattaagcttcccaagtactctctc3660tttgagcttgaaaacggccggaaacgaatgctcgctagtgcgggcgagctgcagaaaggt3720aacgagctggcactgccctctaaatacgttaatttcttgtatctggccagccactatgaa3780aagctcaaagggtctcccgaagataatgagcagaagcagctgttcgtggaacaacacaaa3840cactaccttgatgagatcatcgagcaaataagcgaattctccaaaagagtgatcctcgcc3900gacgctaacctcgataaggtgctttctgcttacaataagcacagggataagcccatcagg3960gagcaggcagaaaacattatccacttgtttactctgaccaacttgggcgcgcctgcagcc4020ttcaagtacttcgacaccaccatagacagaaagcggtacacctctacaaaggaggtcctg4080gacgccacactgattcatcagtcaattacggggctctatgaaacaagaatcgacctctct4140cagctcggtggagacaagcgtcctgctgctactaagaaagctggtcaagctaagaaaaag4200aaataa4206<210>11<211>20<212>dna<213>artificial<220><223>β-globinre2sgrna1<400>11acccaatgacctcaggctgt20<210>12<211>20<212>dna<213>artificial<220><223>β-globinre2sgrna2<400>12tcacttgttagcggcatctg20<210>13<211>29<212>dna<213>artificial<220><223>cas9-g915f-f<400>13ggataaagcattcttcatcaaaaggcagc29<210>14<211>18<212>dna<213>artificial<220><223>cas9-g915f-r<400>14aactcagacaggccacct18<210>15<211>86<212>dna<213>artificial<220><223>hiseq-rrm-1f3<400>15aatgatacggcgaccaccgagatctacactctttccctacacgacgctcttccgatctat60atggcatcctagccttaagaaactag86<210>16<211>81<212>dna<213>artificial<220><223>hiseq-rrm-1r2<400>16aatgatacggcgaccaccgagatctacactctttccctacacgacgctcttccgatctta60cgacgcaggagccgtatcatg81<210>17<211>89<212>dna<213>artificial<220><223>hiseq-rrm-3f2<400>17caagcagaagacggcatacgagataagctagtgactggagttcagacgtgtgctcttccg60atctatagcaatgaaatcttgaaggagtg89<210>18<211>85<212>dna<213>artificial<220><223>hiseq-rrm-3r2<400>18caagcagaagacggcatacgagattcaagtgtgactggagttcagacgtgtgctcttccg60atctgcacagccctgctctattacg85<210>19<211>21<212>dna<213>artificial<220><223>β-globinre1sgrna1<400>19gattgttgttgccttggagtg21<210>20<211>21<212>dna<213>artificial<220><223>β-globinre1sgrna2<400>20gctggtcccctggtaacctgg21<210>21<211>24<212>dna<213>artificial<220><223>β-globinre1sgrna1f<400>21accgattgttgttgccttggagtg24<210>22<211>24<212>dna<213>artificial<220><223>β-globinre1sgrna1r<400>22aaaccactccaaggcaacaacaat24<210>23<211>24<212>dna<213>artificial<220><223>β-globinre1sgrna2f<400>23accgctggtcccctggtaacctgg24<210>24<211>24<212>dna<213>artificial<220><223>β-globinre1sgrna2r<400>24aaacccaggttaccaggggaccag24<210>25<211>81<212>dna<213>artificial<220><223>hiseq-hstm-af1<400>25aatgatacggcgaccaccgagatctacactctttccctacacgacgctcttccgatcttg60cttagagccaggactaattgc81<210>26<211>83<212>dna<213>artificial<220><223>hiseq-hstm-ar2<400>26aatgatacggcgaccaccgagatctacactctttccctacacgacgctcttccgatcttg60ggtgtagaaatgagcaaataagt83<210>27<211>91<212>dna<213>artificial<220><223>hiseq-hstm-2f<400>27caagcagaagacggcatacgagatgatcgtgtgactggagttcagacgtgtgctcttccg60atctagattgagttctgtttgtttcatctac91<210>28<211>85<212>dna<213>artificial<220><223>hiseq-hstm-2r<400>28caagcagaagacggcatacgagatagtcaagtgactggagttcagacgtgtgctcttccg60atctcagctctgcctgaaaggagtc85當(dāng)前第1頁(yè)12當(dāng)前第1頁(yè)12