支援氧化硅玻璃坩堝的制造條件的設定的裝置、支援制造氧化硅玻璃坩堝用模具的制造 ...的制作方法
【專利摘要】通過旋轉模具法制造相對于設計數據的三維形狀的匹配度高的氧化硅玻璃坩堝。在基于最初的物性參數得到的模擬數據以及測定數據的三維形狀的匹配度低于規定的水平的情況下,設定該匹配度達到規定的水平以上的改善物性參數。另外,在基于最初的制造條件得到的模擬數據以及測定數據的三維形狀的匹配度低于規定的水平的情況下,設定得到與設計數據的匹配度達到規定的水平以上的模擬數據的改善制造條件。其結果,可以將氧化硅玻璃坩堝的設計數據以及測定數據的三維形狀的匹配度提高至規定的水平以上。即,可以通過旋轉模具法制造相對于設計數據的三維形狀的匹配度高的氧化硅玻璃坩堝。
【專利說明】支援氧化硅玻璃坩堝的制造條件的設定的裝置、支援制造氧化硅玻璃坩堝用模具的制造條件的設定的裝置、支援使用氧化硅玻璃坩堝的硅單晶提拉的條件設定的裝置
【技術領域】
[0001]本發明涉及支援氧化硅玻璃坩堝的制造條件的設定的裝置以及通過該裝置得到的數據、支援制造氧化硅玻璃坩堝用模具的制造條件的設定的裝置以及通過該裝置得到的數據、支援使用氧化硅玻璃坩堝的硅單晶提拉的條件設定的裝置以及通過該裝置得到的數據。
【背景技術】
[0002]在氧化硅玻璃坩堝的制造方法的一例中,具備:在旋轉模具的內表面上堆積平均粒徑約300 μ m的氧化硅粉末而形成氧化硅粉末層的氧化硅粉末層的形成工序;和從模具側開始對氧化硅粉末層進行減壓的同時、通過使氧化硅粉末層進行電弧熔融而形成氧化硅玻璃層的電弧熔融工序(將該方法稱為“旋轉模具法”)。
[0003]在電弧熔融工序的初期通過對氧化硅粉末層大幅度減壓,除去氣泡,形成透明氧化硅玻璃層(以下,稱為“透明層”),之后,通過使減壓變弱形成殘留有氣泡的含氣泡的氧化硅玻璃層(以下,稱為“含氣泡層”),由此,可以形成在內表面側具有透明層、在外表面側具有含氣泡層的二層結構的氧化硅玻璃坩堝。
[0004]另一方面,由于通過切克勞斯基(以下,稱為CZ)法使用氧化硅玻璃坩堝提拉硅單晶進行制造,因此,花費精力開發通過計算機對作為固體的硅單晶與作為液體的硅熔液的固液界面形狀、和該固液界面附近的溫度分布進行模擬、并進行數值分析的方法。
[0005]例如,在專利文獻I中記載了將以網狀結構模型化后的熱區的各構件的物性值輸入計算機中,基于加熱器的發熱量以及各構件的輻射率求出各構件的表面溫度分布。
[0006]【現有技術文獻】
【專利文獻】
【專利文獻I】日本特開2009-190926號公報。
【發明內容】
[0007]【發明要解決的課題】
但是,上述專利文獻I中記載的先前技術,難以用于通過旋轉模具法制造氧化硅玻璃坩堝時的模擬。而且,通過旋轉模具法制造氧化硅玻璃坩堝時,多數情況下得到根據各種要素與設計數據不同的三維形狀的氧化硅玻璃坩堝。因此,至今,實際上難以通過旋轉模具法制造與設計數據相同的三維形狀的氧化硅玻璃坩堝。另外,也難以得到能夠制造與氧化硅玻璃坩堝的設計數據相同的三維形狀的氧化硅玻璃坩堝的模具。另外,也難以在適于每個氧化硅玻璃坩堝的特性的單晶硅的提拉條件的設定中使用。
[0008]另外,近年來,直徑300mm的晶片成為半導體芯片制造工藝的主流,使用直徑450mm的晶片的工藝也在開發中。為了制造這樣的晶片,當然在用于制造單晶硅錠的CZ法中使用的氧化硅玻璃坩堝也要求為28英寸(71cm)、32英寸(81cm)、36英寸(約91cm)或40英寸(102cm)的大口徑坩堝。直徑1lcm的坩堝為重量約120kg的巨大的坩堝,在其中收容的硅熔液的質量為900kg以上。
[0009]使用氧化硅玻璃坩堝被提拉的硅單晶的純度要求為99.999999999%以上,因此,要求在提拉中利用的氧化硅玻璃坩堝的內表面平滑使其與設計數據的三維形狀相同。如果在氧化硅玻璃坩堝的內表面與設計數據不相同而具有龜裂等的情況下,則有時從該龜裂處剝離氧化硅的碎片等并混入而引起大問題。
[0010]至今,以達到與設計數據同樣的三維形狀的方式制造小口徑的氧化硅玻璃坩堝并不困難。但是,氧化硅玻璃坩堝的口徑越大,實際上通過旋轉模具法制造與設計數據相同的三維形狀的氧化硅玻璃坩堝變得越困難。另外,氧化硅玻璃坩堝的口徑越大,得到能夠制造與氧化硅玻璃坩堝的設計數據相同的三維形狀的氧化硅玻璃坩堝的模具也變得越困難。
[0011]另外,氧化硅玻璃的軟化點為約120(Tl300°C,相對于此,CZ法中將硅熔液在加熱至1450-1500?的高溫的狀態下經過兩周以上的長時間進行提拉。即,在硅單晶的提拉時,在坩堝中收容約1500°c的硅熔液為900kg以上。而且,氧化硅玻璃坩堝是結束I次單晶硅錠的提拉就廢棄的一次性的制品。并且,盡管為一次性的,但為I個達到數百萬元的高價的制品。因此,作為使用者,在單晶硅錠的提拉前,必須預先對每個氧化硅玻璃坩堝設定多晶硅的加料量、提拉條件等信息。而且,氧化硅玻璃坩堝的口徑越大,適于每個氧化硅玻璃坩堝的特性的單晶硅的提拉條件的設定變得越困難。
[0012]本發明是鑒于上述情況而完成的,其目的在于,通過旋轉模具法制造相對于設計數據的三維形狀的匹配度高的氧化硅玻璃坩堝。另外,本發明的其他目的在于,得到能夠制造相對于氧化硅玻璃坩堝的設計數據的三維形狀的匹配度高的氧化硅玻璃坩堝的模具。另外,本發明的另一目的在于,使適于每個氧化硅玻璃坩堝的特性的單晶硅的提拉條件的設定變容易。
[0013]【用于解決課題的方法】
根據本發明,提供支援氧化硅玻璃坩堝的制造條件的設定的裝置。該裝置具備:取得任意的型式、制造批或者序列號的氧化硅玻璃坩堝的三維形狀的設計數據的設計數據取得部;基于該設計數據設定氧化硅玻璃坩堝的制造條件數據的制造條件數據設定部;使用能夠進行選自由傳熱計算、流體計算以及結構計算構成的組中的一種以上的計算引擎、得到通過該制造條件得到的氧化硅玻璃坩堝的三維形狀的模擬數據的模擬部;設定該計算引擎使用的物性參數的物性參數設定部;取得基于該制造條件制造的氧化硅玻璃坩堝的三維形狀的測定數據的測定數據取得部;在該設計數據、該模擬數據、該測定數據中將2種數據進行比較對照、判定兩者的三維形狀的匹配度的匹配度判定部;和該模擬數據或者制造條件數據的輸出部。
[0014]另外,該物性參數設定部,在基于最初的物性參數得到的該模擬數據以及該測定數據的三維形狀的匹配度低于規定的水平的情況下,具有設定該匹配度達到規定的水平以上的改善物性參數的改善物性參數設定部。而且,該制造條件設定部具有:設定得到與該設計數據的匹配度達到規定的水平以上的模擬數據的制造條件的改善制造條件數據設定部。
[0015] 根據該構成,在基于最初的物性參數得到的模擬數據以及測定數據的三維形狀的匹配度低于規定的水平的情況下,為了設定該匹配度達到規定的水平以上的改善物性參數,可以將模擬數據以及測定數據的三維形狀的匹配度提高至規定的水平以上。另外,根據該構成,為了設定得到與設計數據的匹配度達到規定的水平以上的模擬數據的制造條件,可以將設計數據以及模擬數據的三維形狀的匹配度提高至規定的水平以上。其結果,根據該構成,可以將氧化硅玻璃坩堝的設計數據以及測定數據的三維形狀的匹配度提高至規定的水平以上。即,根據該構成,可以通過旋轉模具法制造相對于設計數據的三維形狀的匹配度高的氧化硅玻璃坩堝。
[0016]另外,根據本發明,提供通過上述裝置得到的模擬數據。
[0017]該模擬數據以及測定數據的三維形狀的匹配度如上所述為規定的水平以上。因此,如果使用該模擬數據,則能夠精度良好地預測通過旋轉模具法實際上制造的氧化硅玻璃坩堝的三維形狀。
[0018]另外,根據本發明,提供通過上述裝置得到的改善制造條件數據。
[0019]在使用該改善制造條件數據的情況下,得到如上所述與設計數據的匹配度達到規定的水平以上的模擬數據。而且,在使用上述裝置時,如上所述在基于最初的物性參數得到的模擬數據以及測定數據的三維形狀的匹配度低于規定的水平的情況下,為了設定該匹配度達到規定的水平以上的改善物性參數,可以將模擬數據以及測定數據的三維形狀的匹配度提高至規定的水平以上。因此,如果使用該改善制造條件數據,則可以通過旋轉模具法制造相對于設計數據的三維形狀的匹配度高的氧化硅玻璃坩堝。
[0020]另外,根據本發明,提供支援制造氧化硅玻璃坩堝用模具的制造條件的設定的裝置。該裝置具備:取得任意的型式、制造批或者序列號的氧化硅玻璃坩堝的三維形狀的設計數據的坩堝設計數據取得部;基于該坩堝設計數據設定模具的三維形狀的設計數據的模具設計數據設定部;使用能夠進行選自由傳熱計算、流體計算以及結構計算構成的組中的一種以上的計算的計算引擎、得到在如該模具設計數據所示的三維形狀的模具上將氧化硅粉末進行電弧熔融而得到的氧化硅玻璃坩堝的三維形狀的模擬數據的模擬部;設定該計算引擎使用的物性參數的參數設定部;取得在基于該模具設計數據制造的模具上將氧化硅粉末進行電弧熔融而得到的氧化硅玻璃坩堝的三維形狀的坩堝測定數據的坩堝測定數據取得部;在該坩堝設計數據、該模擬數據、該坩堝測定數據中將2種數據進行比較對照、判定兩者的三維形狀的匹配度的匹配度判定部;和該模擬數據或者模具設計數據的輸出部。
[0021]另外,該物性參數設定部,在基于最初的物性參數得到的該模擬數據以及該坩堝測定數據的三維形狀的匹配度低于規定的水平的情況下,具有設定該匹配度達到規定的水平以上的改善物性參數的改善物性參數設定部,而且,該模具設計數據設定部具有:設定得到與該坩堝設計數據的匹配度達到規定的水平以上的模擬數據的改善模具設計數據的改善模具設計數據設定部。
[0022]根據該構成,在基于最初的物性參數得到的模擬數據以及測定數據的三維形狀的匹配度低于規定的水平的情況下,為了設定該匹配度達到規定的水平以上的改善物性參數,可以將模擬數據以及測定數據的三維形狀的匹配度提高至規定的水平以上。另外,根據該構成,為了設定得到與設計數據的匹配度達到規定的水平以上的模擬數據的模具設計數據,可以將設計數據以及模擬數據的三維形狀的匹配度提高至規定的水平以上。其結果,根據該構成,可以將氧化硅玻璃坩堝的設計數據以及測定數據的三維形狀的匹配度提高至規定的水平以上。即,根據該構成,得到能夠制造相對于氧化硅玻璃坩堝的設計數據的三維形狀的匹配度高的氧化硅玻璃坩堝的模具。
[0023]另外,根據本發明,提供通過上述裝置得到的模擬數據。
[0024]該模擬數據以及測定數據的三維形狀的匹配度如上所述為規定的水平以上。因此,如果使用該模擬數據,則能夠精度良好地預測使用基于模具設計數據制造的模具實際上制造的氧化硅玻璃坩堝的三維形狀。
[0025]另外,根據本發明,提供通過上述裝置得到的改善模具設計數據。
[0026]在使用該改善模具設計數據的情況下,得到如上所述與設計數據的匹配度達到規定的水平以上的模擬數據。而且,在使用上述裝置時,在如上所述基于最初的物性參數得到的模擬數據以及測定數據的三維形狀的匹配度低于規定的水平的情況下,為了設定該匹配度達到規定的水平以上的改善物性參數,可以將模擬數據以及測定數據的三維形狀的匹配度提高至規定的水平以上。因此,如果使用基于該改善模具設計數據制造的模具,則可以通過旋轉模具法制造相對于氧化硅玻璃坩堝的設計數據的三維形狀的匹配度高的氧化硅玻璃坩堝。
[0027]另外,根據本發明,提供支援使用氧化硅玻璃坩堝的硅單晶提拉的條件設定的裝置。該裝置具備:取得由使用者輸入的能夠將氧化硅玻璃坩堝個別地特定的坩堝特定信息的坩堝特定信息取得部;取得通過該坩堝特定信息個別地特定的氧化硅玻璃坩堝的三維形狀的測定數據的測定數據取得部;使用能夠進行選自由傳熱計算、流體計算以及結構計算構成的組中的一種以上的計算的計算引擎、關于使用如該測定數據所示的三維形狀的氧化硅玻璃坩堝進行硅單晶的提拉時的結晶缺陷的發生得到模擬數據的模擬部;設定該模擬部使用的包括加熱溫度、提拉速度以及轉速的提拉條件,在基于最初的提拉條件得到的該模擬數據的結晶缺陷的發生率超過規定的水平的情況下,設定該結晶缺陷的發生率達到規定的水平以下的改善提拉條件的提拉條件設定部;和輸出該提拉條件的輸出部。
[0028]根據該構成,在個別地特定由使用者輸入的氧化硅玻璃坩堝的方面,可以基于該氧化硅玻璃坩堝的三維形狀的測定數據進行模擬,輸出結晶缺陷的發生率達到規定的水平以下的改善提拉條件。因此,使用者可以容易地進行適于每個氧化硅玻璃坩堝的特性的單晶硅的提拉條件的設定。
[0029]另外,根據本發明,提供另外的支援使用氧化硅玻璃坩堝的硅單晶提拉的條件設定的裝置。該裝置具備:取得由使用者輸入的能夠將氧化硅玻璃坩堝個別地特定的坩堝特定信息的坩堝特定信息取得部;取得通過該坩堝特定信息個別地特定的氧化硅玻璃坩堝的三維形狀的測定數據的測定數據取得部;和輸出該測定數據的輸出部。
[0030]根據該構成,在由使用者輸入的氧化硅玻璃坩堝個別地特定的方面,輸出該氧化硅玻璃坩堝的三維形狀的測定數據。因此,使用者基于該氧化硅玻璃坩堝的三維形狀的測定數據,可以容易地進行適于每個氧化硅玻璃坩堝的特性的單晶硅的提拉條件的設定。
[0031]【發明效果】
根據本發明,可以通過旋轉模具法制造相對于設計數據的三維形狀的匹配度高的氧化硅玻璃坩堝。另外,根據本發明,得到能夠制造相對于氧化硅玻璃坩堝的設計數據的三維形狀的匹配度高的氧化硅玻璃坩堝的模具。另外,根據本發明,可以容易地進行適于每個氧化硅玻璃坩堝的特性的單晶硅的提拉條件的設定。
【專利附圖】
【附圖說明】
[0032]圖1是用于說明實施方式I的裝置的工作原理的概念圖。
[0033]圖2是用于對利用使用實施方式I或實施方式2的裝置得到的改善制造條件數據或改善模具設計數據、更嚴格地進行氧化硅玻璃坩堝的制造工藝中的電弧電源以及減壓機構的反饋控制進行說明的概念圖。
[0034]圖3是用于說明實施方式I的裝置的整體構成的功能方塊圖。
[0035]圖4是用于說明實施方式I的裝置的模擬部、制造條件數據設定部以及物性參數設定部的詳細的構成的功能方塊圖。
[0036]圖5是用于對實施方式f 3的裝置中使用的氧化硅玻璃坩堝的測定數據的數據構成進行說明的數據表。
[0037]圖6是用于說明實施方式I的裝置的工作的流程圖。
[0038]圖7是用于對使用機械手臂以及測距部測定實施方式f 3的裝置中使用的氧化硅玻璃坩堝的測定數據的方法進行說明的測定工序圖。
[0039]圖8是用于說明圖7中的測定原理的概念圖。
[0040]圖9是表示圖7中的內部測距部的測定結果的圖。
[0041]圖10是表示圖7中的外部測距部的測定結果的圖。
[0042]圖11是用于說明實施方式2的裝置的工作原理的概念圖。
[0043]圖12是用于說明實施方式2的裝置的整體構成的功能方塊圖。
[0044]圖13是用于說明實施方式2的裝置的模擬部、模具設計數據設定部以及物性參數設定部的詳細的構成的功能方塊圖。
[0045]圖14是用于說明實施方式2的裝置的工作的流程圖。
[0046]圖15是用于說明實施方式3的裝置的工作原理的概念圖。
[0047]圖16是用于對利用使用實施方式3的裝置得到的氧化硅玻璃坩堝的三維形狀的測定數據、使用者適當地進行單晶硅的提拉工藝中的多晶硅原料的加料以及熔融進行說明的概念圖。
[0048]圖17是用于對利用使用實施方式3的裝置得到的提拉條件的數據、使用者更嚴格地進行單晶硅的提拉工藝中的加熱溫度、提拉速度以及轉速的反饋控制進行說明的概念圖。
[0049]圖18是用于說明實施方式3的裝置的整體構成的功能方塊圖。
[0050]圖19是用于說明實施方式3的裝置的模擬部、以及提拉條件設定部的詳細的構成的功能方塊圖。
[0051]圖20是用于說明實施方式3的裝置的工作的流程圖。
【具體實施方式】
[0052]以下,使用附圖對本發明的實施方式進行說明。另外,實施方式廣3中,有時對不同的構成要素賦予同樣的符號,但構成要素名不同的情況下表示不同的部位。
[0053]<實施方式1:支援氧化硅玻璃坩堝的制造條件的設定的裝置>
圖1是用于說明本實施方式的裝置的工作原理的概念圖。在使用本實施方式的裝置設定氧化硅玻璃坩堝的制造條件時,首先準備通過三維CAD等設計氧化硅玻璃坩堝的設計數據。該三維CAD的設計數據可以將二維CAD的設計數據轉換成三維CAD的設計數據而得到。
[0054]接著,設定基于該設計數據用于制造氧化硅玻璃坩堝的制造條件數據(例如,電弧電力、減壓條件、模具轉速等的時間表)。此時,作為最初的制造條件數據,例如,可以設定熟練的操作員或者工程師基于過去的知識以及經驗、判斷為適當的制造條件數據。或者,作為最初的制造條件數據,可以直接使用在過去的氧化硅玻璃坩堝的制造記錄中規定的型式的氧化硅玻璃坩堝的品質檢查的結果為良好的制造條件數據。
[0055]而且,使用該最初設定的制造條件數據,使用具備電源、碳電極、碳模具、減壓機構等的氧化硅玻璃坩堝的制造裝置,使在模具上層疊的氧化硅粉末(也稱為石英粉)進行熔融,制造氧化硅玻璃坩堝。具體而言,通過在旋轉模具的內表面上堆積平均粒徑約300μπι的氧化硅粉末而形成氧化硅粉末層的氧化硅粉末層形成工序、和從模具側開始對氧化硅粉末層進行減壓的同時、通過使氧化硅粉末層進行電弧熔融而形成氧化硅玻璃層的電弧熔融工序,制造氧化硅玻璃坩堝。
[0056]此時,在電弧熔融工序的初期通過對氧化硅粉末層大幅度減壓,除去氣泡,形成透明層,之后,通過使減壓變弱,形成殘留有氣泡的含氣泡層,由此,可以形成在內表面側具有透明層、在外表面側具有含氣泡層的二層結構的氧化硅玻璃坩堝。
[0057]而且,使用后述的機械手臂測定該氧化硅玻璃坩堝的三維形狀,得到氧化硅玻璃坩堝的三維形狀的測定數據。
[0058]另外,使用例如應力分析以及熱流體分析等數值分析方法生成假定為在使用上述最初設定的制造條件數據制造氧化硅玻璃坩堝的情況下得到的氧化硅玻璃坩堝的三維形狀的模擬數據。此時,設定關于碳模具、天然石英粉、合成氧化硅粉末、透明層、含氣泡層等的物性參數(例如,密度、介電常數、導磁率、磁化率、剛性模量、楊氏模量、導電率、極化率、硬度、比熱、線膨脹系數、沸點、熔點、玻璃化轉變溫度、傳熱系數、泊松比等)。作為這些物性參數,可以使用市售的模擬軟件中附屬的默認的物性參數作為最初的物性參數。或者,可以設定熟練的操作員或者工程師基于過去的知識以及經驗、判斷為適當的物性參數。
[0059]之后,計算如上所述得到的模擬數據以及測定數據的匹配度,在該匹配度低于規定的水平的情況下,變更關于碳模具、天然石英粉、合成氧化硅粉末、透明層、含氣泡層等的物性參數,反復進行模擬直到上述匹配度達到規定的水平以上。其結果,采用上述匹配度達到規定的水平以上的物性參數作為改善物性參數。作為表示這樣的匹配度的指標,可以使用已知的各種模式匹配法。
[0060]接著,計算使用該改善物性參數時的設計數據以及模擬數據的匹配度,在該匹配度低于規定的水平的情況下,變更用于制造氧化硅玻璃坩堝的制造條件數據(例如,電弧電力、減壓條件、模具轉速等的時間表),反復進行模擬直到上述匹配度達到規定的水平以上。其結果,采用上述匹配度達到規定的水平以上的制造條件數據作為改善制造條件數據。作為表示這樣的匹配度的指標,同樣可以使用已知的各種模式匹配法。
[0061]這樣,在基于最初的物性參數得到的模擬數據以及測定數據的三維形狀的匹配度低于規定的水平的情況下,為了設定該匹配度達到規定的水平以上的改善物性參數,可以將模擬數據以及測定數據的三維形狀的匹配度提高至規定的水平以上。另外,如果這樣操作,則為了設定得到與設計數據的匹配度達到規定的水平以上的模擬數據的制造條件,可以將設計數據以及模擬數據的三維形狀的匹配度提高至規定的水平以上。其結果,如果這樣操作,則可以將氧化硅玻璃坩堝的設計數據以及測定數據的三維形狀的匹配度提高至規定的水平以上。即,如果這樣操作,則可以通過旋轉模具法制造相對于設計數據的三維形狀的匹配度高的氧化硅玻璃坩堝。
[0062]圖2是用于對利用使用本實施方式的裝置得到的改善制造條件數據、更嚴格地進行氧化硅玻璃坩堝的制造工藝中的電弧電源以及減壓機構的反饋控制進行說明的概念圖。通過利用使用圖1中說明的方法得到的改善制造條件數據,如該圖所示,在電弧電力、減壓條件、模具轉速等的時間表中,可以施加更加嚴格的反饋。其結果,可以通過旋轉模具法制造相對于設計數據的三維形狀的匹配度高的氧化硅玻璃坩堝。
[0063]圖3是用于說明本實施方式的裝置的整體構成的功能方塊圖。在該制造條件設定支援裝置1000中設置:取得任意的型式、制造批或者序列號的氧化硅玻璃坩堝的三維形狀的設計數據的設計數據取得部104。該設計數據取得部104可以取得熟練的操作員或者工程師通過操作部124輸入的氧化硅玻璃坩堝的三維形狀的設計數據。另外,該設計數據取得部104可以通過網絡118取得在外部的服務器126中存儲的氧化硅玻璃坩堝的三維形狀的設計數據。
[0064]在該制造條件設定支援裝置1000中設置基于設計數據設定氧化硅玻璃坩堝的制造條件數據的制造條件數據設定部140。該制造條件數據設定部140可以設定熟練的操作員或者工程師通過操作部124輸入的氧化硅玻璃坩堝的制造條件數據(例如,電弧電力、減壓條件、模具轉速等的時間表)作為最初的制造條件數據。另外,該制造條件數據設定部140可以通過網絡118取得在外部的服務器126中存儲的過去的氧化硅玻璃坩堝的制造記錄中規定的型式的氧化硅玻璃坩堝的品質檢查的結果為良好的制造條件數據。
[0065]在該制造條件設定支援裝置1000中具備模擬部112,所述模擬部112中,使用能夠進行選自由傳熱計算、流體計算以及結構計算構成的組中的一種以上的計算的計算引擎,使用應力分析以及熱流體分析等數值分析方法得到通過上述制造條件得到的氧化硅玻璃坩堝的三維形狀的模擬數據。另外,在該制造條件設定支援裝置1000中設置設定上述模擬部112的計算引擎使用的物性參數的物性參數設定部106。該物性參數設定部106可以設定關于熟練的操作員或者工程師通過操作部124輸入的碳模具、天然石英粉、合成氧化硅粉末、透明層、含氣泡層等的物性參數(例如,密度、介電常數、導磁率、磁化率、剛性模量、楊氏模量、導電率、極化率、硬度、比熱、線膨脹系數、沸點、熔點、玻璃化轉變溫度、傳熱系數、泊松比等)作為最初的物性參數。或者,該物性參數設定部106可以通過網絡118取得在外部的服務器126中存儲的物性參數等。或者,該物性參數設定部106可以使用在物性參數存儲部142中存儲的附屬于市售的模擬軟件的默認的物性參數作為最初的物性參數。
[0066]在該制造條件設定支援裝置1000中設置取得基于上述制造條件實際上制造的氧化硅玻璃坩堝的三維形狀的測定數據的測定數據取得部102。該測定數據取得部102可以由后述的測定裝置128通過網絡118可以直接地取得測定數據&。或者,該測定數據取得部102可以通過網絡118取得在外部的服務器126中存儲的氧化硅玻璃坩堝的三維形狀的測定數據。
[0067] 在該制造條件設定支援裝置1000中設置在上述設計數據、上述模擬數據、上述測定數據中將2種數據進行比較對照、判定兩者的三維形狀的匹配度的匹配度判定部114。該匹配度判定部114可以進行已知的各種模式匹配法。作為這樣的模式匹配的方法,可以優選使用殘差匹配、正規化相關法、位相限定相關、幾何匹配、矢量相關、廣義霍夫變換等。
[0068]在該制造條件設定支援裝置1000中設置模擬數據或者制造條件數據的輸出部116。該輸出部116可以通過圖像顯示部122將模擬數據或者制造條件數據作為圖像數據輸出。另外,該輸出部116也可以將模擬數據或者制造條件數據通過網絡120向圖像顯示部130、打印機132、服務器134等中輸出。
[0069]圖4是用于說明本實施方式的裝置的模擬部、制造條件數據設定部以及物性參數設定部的詳細的構成的功能方塊圖。如該圖所示,在上述模擬部112中設置存儲傳熱計算引擎204、流體計算引擎206、結構計算引擎208等的計算引擎存儲部210。而且,在該模擬部112中也設置將這些傳熱計算引擎204、流體計算引擎206、結構計算引擎208從計算引擎存儲部210中讀入、并進行應力分析以及熱流體分析等數值分析的分析部202。
[0070]在基于最初的物性參數得到的模擬數據以及測定數據的三維形狀的匹配度低于規定的水平的情況下,在上述物性參數設定部106中設置設定匹配度達到規定的水平以上的改善物性參數的改善物性參數設定部402。在匹配度判定部114中計算模擬數據以及測定數據的匹配度,在該匹配度低于規定的水平的情況下,匹配度判定部114將物性參數的變更命令傳遞到物性參數設定部106。而且,接收該變更命令的物性參數設定部106的改善物性參數設定部402,例如,變更關于碳模具、天然石英粉、合成氧化硅粉末、透明層、含氣泡層等的物性參數(例如,密度、介電常數、導磁率、磁化率、剛性模量、楊氏模量、導電率、極化率、硬度、比熱、線膨脹系數、沸點、熔點、玻璃化轉變溫度、傳熱系數、泊松比等)。這樣變更后的改善物性參數被傳遞到模擬部112。接收該改善物性參數的模擬部112使用改善物性參數再次進行模擬模擬,將結果傳遞到匹配度判定部114。反復進行該一系列的工作直到上述匹配度達到規定的水平以上。
[0071]在上述制造條件數據設定部140中設置設定得到與設計數據的匹配度達到規定的水平以上的模擬數據的制造條件的改善制造條件設定部302。在該改善制造條件設定部302中設置電弧放電條件設定部302、轉速設定部304、減壓條件設定部306。在匹配度判定部114中計算設計數據以及模擬數據的匹配度,該匹配度低于規定的水平的情況下,匹配度判定部114將制造條件數據的變更命令傳遞到制造條件數據設定部140。而且,接收該變更命令的制造條件數據設定部140的改善制造條件設定部302,在電弧放電條件設定部302、轉速設定部304、減壓條件設定部306使制造條件數據(例如,電弧電力、減壓條件、模具轉速等的時間表)發生變更。這樣變更后的改善制造條件數據被傳遞到模擬部112。接收該改善制造條件數據的模擬部112使用改善制造條件數據再次進行模擬,將模擬結果傳遞到匹配度判定部114。反復進行該一系列的工作直到上述匹配度達到規定的水平以上。
[0072]圖5是用于對本實施方式的裝置中使用的氧化硅玻璃坩堝的測定數據的數據構成進行說明的數據表。如該圖所示,測定數據取得部102可以由后述的測定裝置128通過網絡118直接地取得具有如該圖所示的數據結構的測定數據。該測定數據中,對于各個位置A、位置B、位置C、位置D、位置E,分別以表格形式記錄內側XYZ坐標、外側XYZ坐標、氣泡含有率、FT-1R光譜、拉曼光譜、表面粗糙度等的數據。
[0073]圖6是用于說明本實施方式的裝置的工作的流程圖。最初,該制造條件設定支援裝置1000的電力變成on,開始一系列的工作。這樣,首先,設計數據取得部104通過網絡118取得在外部的服務器126中存儲的氧化硅玻璃坩堝的三維形狀的設計數據(S102)。接著,制造條件數據設定部140通過網絡118取得在外部的服務器126中存儲的過去的氧化硅玻璃坩堝的制造記錄中規定的型式的氧化硅玻璃坩堝的品質檢查的結果為良好的制造條件數據(S104)。
[0074]接著,物性參數設定部106通過網絡118取得在外部的服務器126中存儲的物性參數等(S106)。而且,模擬部112使用應力分析以及熱流體分析等數值分析方法得到通過上述制造條件得到的氧化硅玻璃坩堝的三維形狀的模擬數據(S108)。
[0075]另一方面,使用上述制造條件數據,通過具備電源、碳電極、碳模具、減壓機構等的氧化硅玻璃坩堝的制造裝置,將在模具上層疊的氧化硅粉末熔融,制造實際上的氧化硅玻璃坩堝(SllO)。而且,測定數據取得部102取得基于上述制造條件實際上制造的氧化硅玻璃坩堝的三維形狀的測定數據(S112)。
[0076]之后,匹配度判定部114將上述模擬數據以及上述測定數據進行比較對照,判定兩者的三維形狀的匹配度(S114)。具體而言,在匹配度判定部114中計算模擬數據以及測定數據的匹配度,判定該匹配度是否低于規定的水平(S116)。如果在模擬數據以及測定數據的匹配度低于規定的水平的情況下,則改善物性參數設定部402設定匹配度達到規定的水平以上的改善物性參數(S118)。此時,模擬部112使用改善物性參數重新進行模擬。另一方面,模擬數據以及測定數據的匹配度為規定的水平以上的情況下,直接使用該物性參數。
[0077]接著,匹配度判定部114將上述設計數據以及上述模擬數據進行比較對照,判定兩者的三維形狀的匹配度(S120)。具體而言,在匹配度判定部114中計算設計數據以及模擬數據的匹配度,判定該匹配度是否低于規定的水平(S122)。如果在設計數據以及模擬數據的匹配度低于規定的水平的情況下,則改善制造條件設定部302設定匹配度達到規定的水平以上的改善制造條件數據(S124)。此時,模擬部112使用改善制造條件數據重新進行模擬。另一方面,設計數據以及模擬數據的匹配度為規定的水平以上的情況下,直接使用該制造條件數據。而且,輸出部116通過網絡120將模擬數據或者制造條件數據向圖像顯示部130、打印機132、服務器134等中輸出(S126)。至此,結束一系列的工作。
[0078]<氧化硅玻璃坩堝的三維形狀測定裝置>
以下,使用圖r圖?ο,說明用于取得上述實施方式中使用的氧化硅玻璃坩堝的三維形狀的測定數據的氧化硅玻璃坩堝的三維形狀測定方法。
[0079]<氧化硅玻璃坩堝>
圖7表示使用機械手臂以及測距部測定通過本實施方式裝置獲得的氧化硅玻璃坩堝的測定數據的方法進行說明的測定工序圖。作為測定對象的氧化硅玻璃坩堝11在內表面側具有透明層13、在外表面側具有含氣泡層15,以開口部朝下的方式載置于能夠旋轉的旋轉臺9上。氧化硅玻璃坩堝11具有:曲率比較大的彎曲部lib、具有上面開口的邊緣部的圓筒狀的側壁部11a、和由直線或曲率比較小的曲線構成的研缽狀的底部11c。本實施方式中,彎曲部是連接側壁部IIa與底部Ilc的部分,是指從彎曲部的曲線的切線與氧化硅玻璃坩堝的側壁部Ila重合的點到與底部Ilc具有共同切線為止的點的部分。換言之,氧化硅玻璃坩堝11的側壁部Ila開始彎曲的點為側壁部Ila與彎曲部Ilb的邊界。另外,坩堝的底的曲率一定的部分為底部11c,距坩堝的底的中心的距離增加時,曲率開始變化的點為底部Ilc與彎曲部Ilb的邊界。
[0080]<內部機械手臂、內部測距部>
在坩堝11上覆蓋的位置上設置的基臺I上,設置內部機械手臂5。內部機械手臂5具備:多個手臂5a、能夠旋轉地支撐這些手臂5a的多個接頭5b、和主體部5c。在主體部5c上設置未圖示的外部端子,能夠進行與外部的數據交換。在內部機械手臂5的頂端設置進行坩堝11的內表面形狀的測定的內部測距部17。內部測距部17通過對坩堝11的內表面照射激光,檢測出來自內表面的反射光,測定從內部測距部17到坩堝11的內表面的距離。在主體部5c內設置進行接頭5b以及內部測距部17的控制的控制部。控制部通過在主體部5c上設置的程序或者基于外部輸入信號使接頭5b旋轉而使手臂5進行動作,從而使內部測距部17移動至任意的三維位置。具體而言,使內部測距部17沿坩堝內表面以非接觸的方式移動。因此,對控制部提供坩堝內表面的大致的形狀數據,根據該數據,使內部測距部17的位置移動。更具體而言,例如,從接近圖7(a)所示的坩堝11的開口部附近的位置開始測定,如圖7(b)所示,使內部測距部17朝向坩堝11的底部Ilc移動,在移動路徑上的多個測定點處進行測定。測定間隔例如為l~5mm,例如2mm。測定預先在內部測距部17內存儲的時刻進行,或者通過外部觸發進行。測定結果在內部測距部17內的存儲部中存儲,在測定結束后集中向主體部5c傳送,或者每次測定逐次向主體部5c傳送。內部測距部17能夠以通過與主體部5c分別設置的控制部進行控制的方式來構成。
[0081]從坩堝的開口部到底部Ilc的測定結束時,使旋轉臺9略微旋轉,進行同樣的測定。該測定可以從底部Ilc朝向開口部進行。旋轉臺9的旋轉角考慮精度和測定時間來確定,例如為2~10度。旋轉角過大時,測定精度不充分,過小時,測定時間過長。旋轉臺9的旋轉基于內置程序或者外部輸入信號進行控制。旋轉臺9的旋轉角可以通過旋轉編碼器等檢測。旋轉臺9的旋轉優選與內部測距部17以及后述的外部測距部19的移動連動,由此,容易計算內部測距部17以及外部測距部19的三維坐標。
[0082]如后文所敘述, 內部測距部17可以測定內部測距部17到內表面的距離(內表面距離)、以及內部測距部17到透明層13與含氣泡層15的界面的距離(界面距離)二者。由于接頭5b的角度通過在接頭5b上設置的旋轉編碼器等已知,在各測定點中的內部測距部17的位置的三維坐標以及方向已知,因此,如果求出內表面距離以及界面距離,則已知內表面上的三維坐標、以及界面上的三維坐標。而且,坩堝11的開口部到底部Ilc的測定在坩堝11的整個周圍進行,因此,已知坩堝11的內表面的三維形狀、以及界面的三維形狀。另外,已知內表面與界面之間的距離,因此,透明層13的厚度也已知,求出透明層的厚度的三維分布。
[0083]<外部機械手臂、外部測距部>
在坩堝11的外部設置的基臺3上,設置外部機械手臂7。外部機械手臂7具備:多個手臂7a、能夠旋轉地支撐這些手臂的多個接頭7b、和主體部7c。在主體部7c中設置未圖示的外部端子,能夠進行與外部的數據交換。在外部機械手臂7的頂端設置進行坩堝11的外表面形狀的測定的外部測距部19。外部測距部19通過對坩堝11的外表面照射激光,檢測出來自外表面的反射光,測定從外部測距部19到坩堝11的外表面的距離。在主體部7c內設置進行接頭7b以及外部測距部19的控制的控制部。控制部通過在主體部7c上設置的程序或者基于外部輸入信號使接頭7b旋轉而使手臂7進行動作,從而使外部測距部19移動至任意的三維位置。具體而言,使外部測距部19沿坩堝外表面以非接觸的方式移動。因此,對控制部提供坩堝外表面的大致的形狀數據,根據該數據,使外部測距部19的位置移動。更具體而言,例如,從與圖7(a)所示的坩堝11的開口部附接近近的位置開始測定,如圖7(b)所示,使外部測距部19朝向坩堝11的底部Ilc移動,在移動路徑上的多個測定點處進行測定。測定間隔例如為f 5mm,例如2mm。測定預先在外部測距部19內存儲的時刻進行,或者通過外部觸發進行。測定結果在外部測距部19內的存儲部中存儲,在測定結束后集中向主體部7c傳送,或者每次測定逐次向主體部7c傳送。外部測距部19能夠以通過與主體部7c分別設置的控制部進行控制的方式來構成。
[0084]內部測距部17和外部測距部19可以同時移動,但內表面形狀的測定與外表面形狀的測定獨立地進行,因此,不一定同時進行。
[0085]外部測距部19可以測定外部測距部19到外表面的距離(外表面距離)。由于接頭7b的角度通過在接頭7b上設置的旋轉編碼器等已知,外部測距部19的位置的三維坐標以及方向已知,因此,如果求出外表面距離,則已知外表面上的三維坐標。而且,坩堝11的開口部到底部Ilc的測定在坩堝11的整個周圍進行,因此,已知坩堝11的外表面的三維形狀。由上,坩堝的內表面以及外表面的三維形狀已知,因此,求出坩堝的壁厚的三維分布。
[0086]〈距離測定的細節〉
接著,結合圖8說明通過內部測距部17以及外部測距部19的距離測定的細節。
[0087]如圖8所示,內部測距部17在坩堝11的內表面側(透明層13側)配置,外部測距部19在坩堝11的外表面側(含氣泡層15側)配置。內部測距部17具備:射出部17a以及檢測部17b。外部測距部19具備:射出部19a以及檢測部19b。另外,內部測距部17以及外部測距部19具備:未圖示的控制部以及外部端子。射出部17a以及19a是射出激光的部位,具備例如半導體激光。射出的激光的波長沒有特別限定,例如為波長60(T700nm的紅色激光。檢測部17b以及19b例如由CCD構成,根據光照射的位置基于三角測量法的原理確定直到目標對象為止的距離。
[0088]由內部測距部17的射出部17a射出的激光,一部分由內表面(透明層13的表面)反射,一部分由透明層13于含氣泡層15的界面反射,這些反射光(內表面反射光、界面反射光)照在檢測部17b而被檢測到。由圖8可知,內表面反射光和界面反射光照在檢測部17b的不同的位置,根據該位置的不同,分別確定內部測距部17到內表面的距離(內表面距離)以及到界面的距離(界面距離)。優選的入射角Θ可以根據內表面的狀態、透明層13的厚度、含氣泡層15的狀態等發生變化,例如為30-60度。
[0089]圖9表示使用市售的激光位移計測定的實時的測定結果。如圖9所示,觀察到二個峰,較近一側(Near —側)的峰與由內表面反射光產生的峰對應,較遠一側(Far —側)的峰與由界面反射光產生的峰對應。這樣,也清晰地檢測由來自透明層13與含氣泡層15的界面的反射光產生的峰。以往,未利用這種方法特定其界面,該結果非常新穎。
[0090]從內部測距部17到內表面的距離過遠的情況下,或者,內表面或界面局部傾斜的情況下,有時沒有觀察到二個峰。該情況下,優選使內部測距部17接近內表面,或將內部測距部17傾斜使激光的射出方向發生變化,搜索觀察到二個峰的位置以及角度。另外,即使沒有同時觀測到二個峰,也可以在某一位置以及角度上觀測到由內表面反射光產生的峰,在其他的位置以及角度上觀測到由界面反射光產生的峰。另外,為了避免內部測距部17與內表面接觸,優選設定最大接近位置,沒有觀察到峰的情況下也不會比該位置更接近內表面。
[0091]另外,在透明層13中存在獨立的氣泡的情況下,有時內部測距部17檢測來自該氣泡的反射光,不能適當地檢測透明層13與含氣泡層15的界面。因此,在某一測定點A測定的界面的位置從在前后的測定點測定的界面的位置發生大幅(超過規定的基準值)偏差的情況下,可以將測定點A處的數據除外。另外,該情況下,可以在從測定點A略微發生偏差的位置上再次進行測定,采用所得到的數據。
[0092]另外,由外部測距部19的射出部19a射出的激光在外表面(含氣泡層15)的表面上發生反射,該反射光(外表面反射光)照在檢測部1%進行檢測,基于在檢測部19b上的檢測位置,確定外部測距部19與外表面之間的距離。圖10表示使用市售的激光位移計測定的實時的測定結果。如圖4所示,僅觀測到一個峰。在沒有觀察到峰的情況下,優選使外部測距部19接近內表面,或者將外部測距部19傾斜使激光的射出方向發生變化,搜索觀測到峰的位置以及角度。
[0093]本發明人認為,為了提高坩堝性能或為了品質管理變容易,必須取得坩堝的內表面的三維形狀和透明層的厚度的三維分布的數據,但由于坩堝為透明體,因此,光學上難以測定三維形狀。也嘗試進行對坩堝內表面照射光、取得圖像、并分析該圖像的方法,但在該方法中,對于圖像的分析需要非常長的時間,因此,無法在坩堝的內表面整體的三維形狀的測定中使用。
[0094]在這樣的狀況下,本發明人發現,從傾斜方向對坩堝的內表面照射激光,結果,除了來自?甘禍內表面的反射光(內表面反射光)之外,還能夠檢測來自透明層與含氣泡層的界面的反射光(界面反射光)。透明層與含氣泡層的界面為氣泡含有率急劇發生變化的面,但不是像空氣與玻璃的界面這樣的明確的界面,因此,能夠檢測來自透明層與含氣泡層的界面的反射光是令人驚奇的發現。而且,上述實施方式的支援氧化硅玻璃坩堝的制造條件的設定的裝置,首次能夠開發這樣的氧化硅玻璃坩堝的三維形狀測定裝置。
[0095]<與氧化硅玻璃坩堝的三維形狀相關的特性值>
上述設計數據、上述模擬數據、上述測定數據均可以包括與上述氧化硅玻璃坩堝的三維形狀相關的特性值的數據。作為該特性值,例如,可以優選使用選自氣泡含有率、表面粗糙度、紅外吸收光譜以及拉曼光譜的一種以上的特性值。
[0096]該情況下,匹配度判定部114以也判定在上述設計數據、上述模擬數據、上述測定數據中的二個數據中包括的特性值的匹配度的方式構成。而且,在基于最初的物性參數得到的模擬數據以及測定數據的三維形狀或者特性值的匹配度中的任意一種低于規定的水平的情況下,改善物性參數設定部402以設定三維形狀以及特性值的匹配度均達到規定的水平以上的改善物性參數的方式構成。另外,改善制造條件數據設定部308以設定得到與設計數據的三維形狀以及特性值的匹配度達到規定的水平以上的模擬數據的制造條件的方式構成。
[0097]這樣,除了三維形狀之外,關于氣泡含有率、表面粗糙度、紅外吸收光譜以及拉曼光譜等特性值也考慮進去,由此,能夠進一步提高模擬的精度。其結果,可以通過旋轉模具法制造相對于設計數據的三維形狀的匹配度更高的氧化硅玻璃坩堝。
[0098]<坩堝的氣泡分布的三維分布的確定方法>
在求出坩堝的內表面的三維形狀后,在該三維形狀上的多個測定點處,測定與各測定點對應的位置的坩堝的壁上的氣泡分布,由此,確定氣泡分布的三維分布。各測定點處的坩堝的壁上的氣泡分布的測定方法只要為非接觸式,則沒有特別限定,如果使用可以選擇性地取得來自焦點對準的面的信息的共焦顯微鏡,則能夠取得明確分出氣泡的位置的清晰的圖像,因此,實現高精度的測定。另外,在錯開焦點位置的同時在各焦點位置的面上取得圖像并進行合成,由此,可知氣泡的三維配置,可知各氣泡的尺寸,因此,能夠求出氣泡分布。作為使焦點位置移動的方法,有:(I)使坩堝移動、或(2)使探針移動、或(3)使探針的物鏡移動的方法。
[0099]測定點的配置沒有特別限定,例如,在從坩堝的開口部朝向底部的方向上以5~20mm間隔配置,在圓周方向上例如為10飛0度間隔。具體的測定例如為:將共焦顯微鏡用探針在內部機械手臂5的頂端安裝,通過與內部測距部17同樣的方法,以非接觸的方式沿內表面移動。使內部測距部17移動時,僅僅通過已知內表面的大致的三維形狀,無法獲知內表面的正確的三維形狀,因此,基于該大致的三維形狀移動內部測距部17,但在測定氣泡分布時,可知內表面的正確的三維形狀,因此,移動共焦顯微鏡用探針時,能夠高精度地控制內表面與探針的距離。
[0100]使共焦顯微鏡用探針從坩堝的開口部移動到底部,在該移動路徑上的多個點測定氣泡分布后,使旋轉臺9旋轉,進行坩堝11的其他部位的氣泡分布的測定。通過這樣的方法可以對坩堝的內表面整體測定氣泡分布,通過該測定結果,可以確定坩堝的氣泡分布的三維分布。
[0101]<坩堝內表面的表面粗糙度的三維分布的確定方法>
求出坩堝內表面的三維形狀后,在該三維形狀上的多個測定點處測定內表面的表面粗糙度,由此,確定該三維分布。在各測定點處的表面粗糙度的測定方法只要為非接觸式,則沒有特別限定,如果使用可以選擇性地取得來自焦點對準的面的信息的共焦顯微鏡,則能夠實現高精度的測定。另外,如果使用共焦顯微鏡,則可以取得表面的細節的三維結構的信息,因此,能夠使用該信息求出表面粗糙度。表面粗糙度具有中心線平均粗糙度Ra、最大高度Rmax、十點平均高度Rz,可以采用這些中的任意一種,也可以采用反映表面的粗糙度的其他參數。需要說明的是,測定點的配置以及具體的測定方法與上述坩堝的氣泡分布的三維分布的確定方法的情況同樣。
[0102]<坩堝的內表面的紅外吸收光譜的三維分布的確定方法>
求出坩堝的內表面的三維形狀后,該三維形狀上的多個測定點處測定內表面的紅外吸收光譜,由此,確定該三維分布。在各測定點處的紅外吸收光譜的測定方法只要為非接觸式,則沒有特別限定,可以通過朝向內表面照射紅外線,檢測該反射光,求出照射光的光譜與反射光的光譜的差來測定。需要說明的是,測定點的配置以及具體的測定方法與上述坩堝的氣泡分布的三維分布的確定方法的情況同樣。需要說明的是,測定點的配置以及具體的測定方法與上述i甘禍的氣泡分布的三維分布的確定方法的情況同樣。
[0103]<坩堝的內表面的拉曼光譜的三維分布的確定方法>
求出坩堝的內表面的三維形狀后,在該三維形狀上的多個測定點處測定內表面的拉曼光譜,由此,確定該三維分布。各測定點處的拉曼光譜的測定方法只要為非接觸式,則沒有特別限定,可以通過朝向內表面照射激光檢測該拉曼散射光來測定。需要說明的是,測定點的配置以及具體的測定方法與上述坩堝的氣泡分布的三維分布的確定方法的情況同樣。
[0104]<實施方式2:支援用于制造氧化硅玻璃坩堝的模具的設計數據的設定的裝置>
圖11是用于說明本實施方式的裝置的工作原理的概念圖。使用本實施方式的裝置設定用于制造氧化硅玻璃坩堝的模具的設計數據時,首先準備通過三維CAD等設計氧化硅玻璃坩堝的設計數據。該三維CAD的設計數據可以是將二維CAD的設計數據轉換成三維CAD的設計數據的設計數據。
[0105]接著,基于該氧化硅玻璃坩堝的設計數據設定用于制造模具的模具設計數據(例如,模具三維形狀、模具溫度梯度、模具減壓配管等)。此時,作為最初的模具設計數據,例如,可以設定熟練的操作員或者工程師基于過去的知識以及經驗、判斷為適當的模具設計數據。或者,作為最初的模具設計數據,可以直接使用過去的氧化硅玻璃坩堝的制造記錄中規定的型式的氧化硅玻璃坩堝的品質檢查的結果為良好的模具設計數據。
[0106]而且,使用該最初設定的模具設計數據(三維CAD數據),使用能夠進行切削或研削加工的NC機床等,削出與模具設計數據大致一致的三維形狀的碳模具。需要說明的是,目前的NC機床的加工精度非常高,因此,被削出的碳模具的三維形狀與模具設計數據大致—致。
[0107]接著,將該模具上層疊的氧化硅粉末(也稱為石英粉)熔融,制造氧化硅玻璃坩堝。具體而言,通過在旋轉模具的內表面上堆積平均粒徑約300 μ m的氧化硅粉末而形成氧化硅粉末層的氧化硅粉末層形成工序、和從模具側開始對氧化硅粉末層進行減壓的同時、通過使氧化硅粉末層進行電弧熔融而形成氧化硅玻璃層的電弧熔融工序,制造氧化硅玻璃坩堝。此時,在電弧熔融工序的初期通過對氧化硅粉末層大幅度減壓,除去氣泡,形成透明層,之后,通過使減壓變弱形成殘留有氣泡的含氣泡層,由此,可以形成在內表面側具有透明層、在外表面側具有含氣泡層的二層結構的氧化硅玻璃坩堝。
[0108]而且,使用后述的機械手臂測定該氧化硅玻璃坩堝的三維形狀,得到氧化硅玻璃坩堝的三維形狀的測定數據。
[0109]另外,使用例如應力分析以及熱流體分析等數值分析方法生成假定在使用上述最初設定的模具設計數據制造氧化硅玻璃坩堝的情況下得到的氧化硅玻璃坩堝的三維形狀的模擬數據。此時,設定關于碳模具、天然石英粉、合成氧化硅粉末、透明層、含氣泡層等的物性參數(例如,密度、介電常數、導磁率、磁化率、剛性模量、楊氏模量、導電率、極化率、硬度、比熱、線膨脹系數、沸點、熔點、玻璃化轉變溫度、傳熱系數、泊松比等)。作為這些物性參數,可以使用附屬于市售的模擬軟件的默認的物性參數作為最初的物性參數。或者,可以設定熟練的操作員或者工程師基于過去的知識以及經驗、判斷為適當的物性參數。
[0110]之后,計算如上所述得到的模擬數據以及測定數據的匹配度,在該匹配度低于規定的水平的情況下,變更關于碳模具、天然石英粉、合成氧化硅粉末、透明層、含氣泡層等的物性參數,反復進行模擬直到上述匹配度達到規定的水平以上。其結果,采用上述匹配度達到規定的水平以上的物性參數作為改善物性參數。作為表示這樣的匹配度的指標,可以使用已知的各種模式匹配法。
[0111]接著,計算使用該改善物性參數時的設計數據以及模擬數據的匹配度,在該匹配度低于規定的水平的情況下,變更用于制造氧化硅玻璃坩堝的模具設計數據(例如,模具三維形狀、模具溫度梯度、模具減壓配管等),反復進行模擬直到上述匹配度達到規定的水平以上。其結果,采用上述匹配度達到規定的水平以上的模具設計數據作為改善模具設計數據。作為表示這樣的匹配度的指標,可以同樣地使用已知的各種模式匹配法。
[0112]這樣,在基于最初的物性參數得到的模擬數據以及測定數據的三維形狀的匹配度低于規定的水平的情況下,為了設定該匹配度達到規定的水平以上的改善物性參數,可以將模擬數據以及測定數據的三維形狀的匹配度提高至規定的水平以上。另外,這樣,為了設定得到與設計數據的匹配度達到規定的水平以上的模擬數據的模具設計數據,可以將設計數據以及模擬數據的三維形狀的匹配度提高至規定的水平以上。其結果,這樣,可以將氧化硅玻璃坩堝的設計數據以及測定數據的三維形狀的匹配度提高至規定的水平以上。即,這樣,得到能夠制造相對于氧化硅玻璃坩堝的設計數據的三維形狀的匹配度高的氧化硅玻璃坩堝的模具。
[0113]圖2表示利用基于使用本實施方式的裝置得到的改善模具設計數據制造的模具來制造氧化硅玻璃坩堝進行說明的概念圖。需要說明的是,該概念圖的內容與實施方式I相同,因此,在此不再進行說明。
[0114]圖12是用于說明本實施方式的裝置的整體構成的功能方塊圖。在該制造條件設定支援裝置1000中設置取得任意的型式、制造批或者序列號的氧化硅玻璃坩堝的三維形狀的設計數據的坩堝設計數據取得部104。該坩堝設計數據取得部104可以取得熟練的操作員或者工程師通過操作部124輸入的氧化硅玻璃坩堝的三維形狀的設計數據。另外,該坩堝設計數據取得部104可以通過網絡118取得在外部的服務器126中存儲的氧化硅玻璃坩堝的三維形狀的設計數據。
[0115]在該制造條件設定支援裝置1000中設置基于氧化硅玻璃坩堝的設計數據設定模具設計數據的模具設計數據設定部140。該模具設計數據140可以設定熟練的操作員或者工程師通過操作部124輸入的模具設計數據(例如,模具三維形狀、模具溫度梯度、模具減壓配管等)作為最初的模具設計數據。另外,該模具設計數據設定部140可以通過網絡118取得在外部的服務器126中存儲的過去的氧化硅玻璃坩堝的制造記錄中規定的型式的氧化硅玻璃坩堝的品質檢查的結果為良好的模具設計數據。
[0116]在該制造條件設定支援裝置1000中具備模擬部112,其中,使用能夠進行選自由傳熱計算、流體計算以及結構計算構成的組中的一種以上的計算的計算引擎,使用應力分析以及熱流體分析等數值分析方法得到通過上述制造條件得到的氧化硅玻璃坩堝的三維形狀的模擬數據。另外,在該制造條件設定支援裝置1000中設置設定上述模擬部112的計算引擎使用的物性參數的物性參數設定部106。該物性參數設定部106可以設定熟練的操作員或者工程師通過操作部124輸入的關于碳模具、天然石英粉、合成氧化硅粉末、透明層、含氣泡層等的物性參數(例如,密度、介電常數、導磁率、磁化率、剛性模量、楊氏模量、導電率、極化率、硬度、比熱、線膨脹系數、沸點、熔點、玻璃化轉變溫度、傳熱系數、泊松比等)作為最初的物性參數。或者,該物性參數設定部106可以通過網絡118取得在外部的服務器126中存儲的物性參數等。或者,該物性參數設定部106可以使用在物性參數存儲部142中存儲的附屬于市售的模擬軟件的默認的物性參數作為最初的物性參數。
[0117]在該制造條件設定支援裝置1000中設置取得基于上述制造條件實際上制造的氧化硅玻璃坩堝的三維形狀的測定數據的測定數據取得部102。該測定數據取得部102可以由后述的測定裝置128通過網絡118直接地取得測定數據。或者,該測定數據取得部102可以通過網絡118取得在外部的服務器126中存儲的氧化硅玻璃坩堝的三維形狀的測定數據。
[0118]在該制造條件設定支援裝置1000中設置在上述設計數據、上述模擬數據、上述測定數據中將2種數據進行比較對照、判定兩者的三維形狀的匹配度的匹配度判定部114。該匹配度判定部114可以進行已知的各種模式匹配法。作為這樣的模式匹配的方法,可以優選使用殘差匹配、正規化相關法、位相限定相關、幾何匹配、矢量相關、廣義霍夫變換等。
[0119]在該制造條件設定支援裝置1000中設置模擬數據或者模具設計數據的輸出部116。該輸出部116可以將模擬數據或者模具設計數據通過圖像顯示部122作為圖像數據輸出。另外,該輸出部116也可以將模擬數據或者模具設計數據通過網絡120向圖像顯示部130、打印機132、服務器134等中輸出。
[0120]圖13是用于說明本實施方式的裝置的模擬部、制造條件數據設定部以及物性參數設定部的詳細的構成的功能方塊圖。如該圖所示,在上述模擬部112中設置存儲傳熱計算引擎204、流體計算引擎206、結構計算引擎208等的計算引擎存儲部210。而且,在該模擬部112中也設置分析部202,其中,從計算引擎存儲部210讀入這些傳熱計算引擎204、流體計算引擎206、結構計算引擎208,進行應力分析以及熱流體分析等數值分析。
[0121] 在基于最初的物性參數得到的模擬數據以及測定數據的三維形狀的匹配度低于規定的水平的情況下,在上述物性參數設定部106中設置設定匹配度達到規定的水平以上的改善物性參數的改善物性參數設定部402。在匹配度判定部114中計算模擬數據以及測定數據的匹配度,在該匹配度低于規定的水平的情況下,匹配度判定部114將物性參數的變更命令傳遞至物性參數設定部106。而且,接收該變更命令的物性參數設定部106的改善物性參數設定部402,變更例如關于碳模具、天然石英粉、合成氧化硅粉末、透明層、含氣泡層等的物性參數(例如,密度、介電常數、導磁率、磁化率、剛性模量、楊氏模量、導電率、極化率、硬度、比熱、線膨脹系數、沸點、熔點、玻璃化轉變溫度、傳熱系數、泊松比等)。這樣變更后的改善物性參數被傳遞到模擬部112。接收該改善物性參數的模擬部112使用改善物性參數再次進行模擬,將模擬結果傳遞至匹配度判定部114。反復進行該一系列的工作直到上述匹配度達到規定的水平以上。
[0122]在上述模具設計數據設定部140中設置設定得到與氧化硅玻璃坩堝的設計數據的匹配度達到規定的水平以上的模擬數據的模具設計數據的改善模具設計數據設定部302。在該改善模具設計數據設定部302中設置模具三維形狀設定部302、模具溫度梯度設定部304、模具減壓配管設定部306。在匹配度判定部114中計算氧化硅玻璃坩堝的設計數據以及模擬數據的匹配度,在該匹配度低于規定的水平的情況下,匹配度判定部114將制造條件數據的變更命令傳遞至模具設計數據設定部140。而且,接收該變更命令的模具設計數據設定部140的改善模具設計數據設定部302在模具三維形狀設定部302、模具溫度梯度設定部304、模具減壓配管設定部306中變更模具設計數據(例如,模具三維形狀、模具溫度梯度、模具減壓配管等)。這樣變更后的改善模具設計數據被傳遞至模擬部112。接收該改善模具設計數據的模擬部112,使用改善模具設計數據再次進行模擬,將模擬結果傳遞至匹配度判定部114。反復進行該一系列的工作直到上述匹配度達到規定的水平以上。
[0123]圖5是用于對本實施方式的裝置中使用的氧化硅玻璃坩堝的測定數據的數據構成進行說明的數據表。需要說明的是,該數據表的構成與實施方式I相同,因此,在此不再進行說明。
[0124]圖14是用于說明本實施方式的裝置的工作的流程圖。最初,該制造條件設定支援裝置1000的電力變成0N,開始一系列的工作。這樣,首先,設計數據取得部104通過網絡118取得在外部的服務器126中存儲的氧化硅玻璃坩堝的三維形狀的設計數據(S102)。接著,坩堝設計數據設定部140通過網絡118取得在外部的服務器126中存儲的過去的氧化硅玻璃坩堝的制造記錄中規定的型式的氧化硅玻璃坩堝的品質檢查的結果為良好的坩堝設計數據(S104)。
[0125]接著,物性參數設定部106通過網絡118取得在外部的服務器126中存儲的物性參數等(S106)。而且,模擬部112使用應力分析以及熱流體分析等數值分析方法得到通過上述坩堝設計數據得到的氧化硅玻璃坩堝的三維形狀的模擬數據(S108)。
[0126]另一方面,使用基于上述坩堝設計數據制造的碳模具,通過具備電源、碳電極、減壓機構等的氧化硅玻璃坩堝的制造裝置,將在模具上層疊的氧化硅粉末熔融,實際上制造氧化硅玻璃坩堝(SllO)。而且,測定數據取得部102取得基于上述制造條件實際上制造的氧化硅玻璃坩堝的三維形狀的測定數據(S112)。
[0127]之后,匹配度判定部114將上述模擬數據以及上述測定數據進行比較對照,判定兩者的三維形狀的匹配度(S114)。具體而言,在匹配度判定部114中計算模擬數據以及測定數據的匹配度,判定該匹配度是否低于規定的水平(S116)。如果在模擬數據以及測定數據的匹配度低于規定的水平的情況下,則改善物性參數設定部402設定匹配度達到規定的水平以上的改善物性參數(S118)。此時,模擬部112使用改善物性參數重新進行模擬。另一方面,模擬數據以及測定數據的匹配度為規定的水平以上的情況下,直接使用該物性參數。
[0128]接著,匹配度判定部114將上述氧化硅玻璃坩堝的設計數據以及上述模擬數據進行比較對照,判定兩者的三維形狀的匹配度(S120)。具體而言,在匹配度判定部114中計算氧化硅玻璃坩堝的設計數據以及模擬數據的匹配度,判定該匹配度是否低于規定的水平(S122)。如果在氧化硅玻璃坩堝的設計數據以及模擬數據的匹配度低于規定的水平的情況下,改善坩堝設計數據設定部302設定匹配度達到規定的水平以上的改善坩堝設計數據(S124)。此時,模擬部112使用改善坩堝設計數據重新進行模擬。另一方面,在氧化硅玻璃坩堝的設計數據以及模擬數據的匹配度為規定的水平以上的情況下,直接使用該坩堝設計數據。而且,輸出部116將模擬數據或者模具設計數據通過網絡120向圖像顯示部130、打印機132、服務器134等中輸出(S126)。至此,結束一系列的工作。
[0129]<氧化硅玻璃坩堝的三維形狀測定裝置>
圖7~圖10表示對用于取得上述實施方式中使用的氧化硅玻璃坩堝的三維形狀的測定數據的氧化硅玻璃坩堝的三維形狀測定方法進行說明的圖。需要說明的是,關于該氧化硅玻璃坩堝的三維形狀測定方法與實施方式I相同,因此,在此不再進行說明。
[0130]<實施方式3:支援使用氧化硅玻璃坩堝的硅單晶提拉的條件設定的裝置>
圖15表示說明本實施方式的裝置的工作原理的概念圖。本實施方式中,首先,使用具備電源、碳電極、碳模具、減壓機構等的氧化硅玻璃坩堝的制造裝置、將模具上層疊的氧化硅粉末(也稱為石英粉)熔融,制造氧化硅玻璃坩堝。具體而言,通過在旋轉模具的內表面上堆積平均粒徑約300 μ m的氧化硅粉末而形成氧化硅粉末層的氧化硅粉末層形成工序、和從模具側開始對氧化硅粉末層進行減壓的同時、通過使氧化硅粉末層進行電弧熔融而形成氧化硅玻璃層的電弧熔融工序,制造氧化硅玻璃坩堝。
[0131]此時,在電弧熔融工序的初期通過對氧化硅粉末層大幅度減壓,除去氣泡,形成透明層,之后,通過使減壓變弱,形成殘留有氣泡的含氣泡層,由此,可以形成在內表面側具有透明層、在外表面側具有含氣泡層的二層結構的氧化硅玻璃坩堝。
[0132]接著,使用后述的機械手臂測定該氧化硅玻璃坩堝的三維形狀,得到氧化硅玻璃坩堝的三維形狀的測定數據。
[0133]之后,根據使用者的要求,提供該氧化硅玻璃坩堝的三維形狀的測定數據。
[0134]而且,使用如該測定數據所示的三維形狀的氧化硅玻璃坩堝,對于通過切克勞斯基法進行硅單晶的提拉時的結晶缺陷的發生進行模擬,設定結晶缺陷的發生率達到規定的水平以下的提拉條件。接著,向使用者提供該結晶缺陷的發生率達到規定的水平以下的提拉條件。其結果,使用者可以容易地進行適于每個氧化硅玻璃坩堝的特性的單晶硅的提拉條件的設定。
[0135]圖16是用于對利用使用本實施方式的裝置得到的氧化硅玻璃坩堝的三維形狀的測定數據、使用者適當地進行單晶硅的提拉工藝中的多晶硅原料的加料以及熔融進行說明的概念圖。硅單晶的提拉時,如圖16(a)所示,在坩堝11內填充多晶硅21,在該狀態下通過在坩堝11的周圍配置的碳加熱器加熱多晶硅使其熔融,如圖16(b)所示,得到硅熔液23。
[0136]硅熔液23的體積根據多晶硅21的質量來確定,因此,硅熔液23的液面23a的高度位置H根據多晶硅21的質量和坩堝11的內表面的三維形狀來確定。根據本實施方式,提供坩堝11的內表面的三維形狀的測定數據,因此,直到坩堝11的任意的高度位置的容積被特定,因而,確定硅熔液23液面23a的高度位置H。在確定硅熔液23的初期液面的高度位置H后,使晶種的頂端下降至高度位置H,與硅熔液23接觸,然后,緩慢地提拉,由此,可以制造硅單晶。
[0137]圖17表示對利用使用本實施方式的裝置得到的提拉條件的數據、使用者更嚴格地進行單晶硅的提拉工藝中的加熱溫度、提拉速度以及轉速的反饋控制進行說明的概念圖。硅單晶的提拉時,在坩堝11內填充多晶硅,在該狀態下通過在坩堝I的周圍配置的碳加熱器加熱多晶硅使其熔融,如圖17(a)所示,得到硅熔液23。
[0138]硅熔液23的體積根據多晶硅21的質量來確定,因此,硅熔液23的液面23a的初期的高度位置HO根據多晶硅21的質量與坩堝11的內表面的三維形狀來確定。根據本實施方式,提供坩堝11的內表面的三維形狀的測定數據,因此,直到坩堝11的任意的高度位置的容積被特定,因此,確定硅熔液23液面23a的初期的高度位置HO。
[0139]在確定硅熔液23的液面23a的初期的高度位置HO后,如圖17 (a)所示,使晶種24的頂端下降至高度位置HO,與硅熔液23接觸,然后,根據本實施方式中提供的包括加熱溫度、提拉速度以及轉速的提拉條件,緩慢地提拉,由此,進行硅單晶25的提拉。
[0140]如圖17(b)所示,在提拉硅單晶25的直筒部(直徑一定的部位)時,在液面23a位于坩堝11的側壁部Ila的情況下,根據本實施方式中提供的包括加熱溫度、提拉速度以及轉速的提拉條件,以恒定速度提拉時,液面23a的下降速度V幾乎恒定,因此,容易控制提拉操作。
[0141]但是,如圖17(c)所示,液面23a達到坩堝11的彎曲部Ilb時,隨著液面23a的下降,該面積急劇縮小,因此,液面23a的下降速度V急劇增大。下降速度V依賴于彎曲部Ilb的內表面形狀,但該內表面形狀在每個坩堝中略有不同,因此,難以預先把握下降速度V變化狀況,妨礙提拉的自動化。
[0142]本實施方式中,根據后述的方法,正確地測定坩堝的內表面的三維形狀,因此,預先可知彎曲部Ilb的內表面形狀(彎曲部的凹凸的數據),因而,能夠正確地預測下降速度V如何變化,因此,基于該預測,確定硅單晶25的提拉速度等提拉條件,提供給使用者,由此,在彎曲部Ilb中也防止位錯,并且能夠做到提拉的自動化。
[0143]圖18是用于說明本實施方式的裝置的整體構成的功能方塊圖。在該制造條件設定支援裝置1000中設置取得由使用者輸入的能夠將氧化硅玻璃坩堝個別地特定的坩堝特定信息的坩堝特定信息取得部140。該坩堝特定信息取得部140可以通過互聯網150以及區域內LAN118取得使用者由使用者末端152輸入的氧化硅玻璃坩堝的型式、制造批、序列號等能夠將氧化硅玻璃坩堝個別地特定的信息。
[0144]在該制造條件設定支援裝置1000中設置取得通過上述坩堝特定信息個別地特定的氧化硅玻璃坩堝的三維形狀的測定數據的測定數據取得部102。該測定數據取得部102可以通過區域內LAN118取得在外部的服務器126中存儲的氧化硅玻璃坩堝的三維形狀的測定數據。
[0145]在該制造條件設定支援裝置1000中設置模擬部112,其中,使用能夠進行選自由傳熱計算、流體計算以及結構計算構成的組中的一種以上的計算的計算引擎,關于使用如上述測定數據所示的三維形狀的氧化硅玻璃坩堝進行硅單晶的提拉時的結晶缺陷的發生得到模擬數據。
[0146]在該制造條件設定支援裝置1000中設置提拉條件設定部114,其中,設定上述模擬部112使用的包括加熱溫度、提拉速度以及轉速的提拉條件,在基于最初的提拉條件得到的模擬數據的結晶缺陷的發生率超過規定的水平的情況下,設定結晶缺陷的發生率達到規定的水平以下的改善提拉條件。
[0147]在該制造條件設定支援裝置1000中設置輸出上述提拉條件的輸出部116。該輸出部116可以將氧化硅玻璃坩堝的三維形狀的測定數據或者硅單晶的提拉條件通過區域內LANl 18以及互聯網150向使用者末端152輸出。
[0148]圖19表示說明本實施方式的裝置的模擬部、以及提拉條件設定部的詳細的構成的功能方塊圖。如該圖所示,在上述模擬部112中設置存儲傳熱計算引擎204、流體計算引擎206、結構計算引擎208等的計算引擎存儲部210。而且,在該模擬部112中也設置分析部202,其中,從計算引擎存儲部210讀入這些傳熱計算引擎204、流體計算引擎206、結構計算引擎208,進行應力分析以及熱流體分析等數值分析。
[0149]在該模擬部112中設置結晶缺陷預測部106,其中,使用能夠進行選自由傳熱計算、流體計算以及結構計算構成的組中的一種以上的計算的計算引擎,關于使用如測定數據所示的三維形狀的氧化硅玻璃坩堝進行硅單晶的提拉時的結晶缺陷的發生進行預測。在該結晶缺陷預測部106中設置結晶結構計算部402,其中,使用能夠進行選自由傳熱計算、流體計算以及結構計算構成的組中的一種以上的計算的計算引擎,進行使用如測定數據所示的三維形狀的氧化硅玻璃坩堝進行硅單晶的提拉時的結晶結構的模擬。另外,在該模擬部112中設置存儲不會超過結晶缺陷的發生率的規定的水平(閾值)的閾值存儲部404。
[0150]另一方面,在提拉條件設定部114中設置將模擬部112使用的包括加熱溫度、提拉速度以及轉速的提拉條件設定為默認的提拉條件的默認提拉條件設定部310。該默認提拉條件設定部310從默認存儲部312中讀取在該氧化硅玻璃坩堝的型式的情況下通常使用的默認提拉條件。另外,在基于最初的提拉條件得到的模擬數據的結晶缺陷的發生率超過在閾值存儲部404中存儲的規定的水平(閾值)的情況下,在提拉條件設定部114中設置設定結晶缺陷的發生率達到規定的水平以下的改善提拉條件的改善提拉條件設定部308。在該改善提拉條件設定部308中設置分別設定模擬部112使用的包括加熱溫度、提拉速度以及轉速的提拉條件的加熱溫度設定部302、提拉速度設定部304、轉速設定部306。該改善提拉條件設定部308在默認提拉條件下結晶缺陷的發生率超過規定的水平的情況下,將該氧化硅玻璃坩堝的三維形狀的個別的測定數據以及后述的追加信息列入考慮范圍,設定結晶缺陷的發生率達到規定的水平以下的改善提拉條件。
[0151]在此,返回至圖18,在該制造條件設定支援裝置1000中進一步設置追加信息取得部104,其中,取得由使用者輸入的選自由多晶硅原料、提拉裝置的直徑(或者提拉裝置的制造商名、系列名等)、被施加的磁場的強度(包括磁場的有無的輸入)、提拉的硅單晶的尺寸、提拉的硅單晶的長度、加熱方式(高頻感應、碳加熱器等)、氣氛氣體的種類(氬氣、氮氣、氫氣等)、氣氛氣體的減壓度、連續提拉條件、追加原料加料條件以及保存條件(天氣條件、保存期間等)構成的組中的一種以上的追加信息。需要說明的是,由于對于保存中的坩堝而言濕度、溫度起作用(裂紋變寬),因此天氣條件是重要的信息。該追加信息取得部104可以通過互聯網150以及區域內LAN118取得使用者通過使用者末端152輸入的這些追加信息。
[0152]將這些追加信息列入考慮范圍,模擬部112關于進行硅單晶的提拉時的結晶缺陷的發生進行預測的情況下,模擬的精度進一步提高。因此,提拉條件設定部114可以進一步設定適當的提拉條件。其結果,使用者能夠更加容易地進行適于每個氧化硅玻璃坩堝的特性的單晶硅的提拉條件的設定。
[0153]圖5是用于對本實施方式的裝置中使用的氧化硅玻璃坩堝的測定數據的數據構成進行說明的數據表。需要說明的是,該數據表的構成與實施方式I相同,因此,在此不再進行說明。
[0154]圖20是用于說明本實施方式的裝置的工作的流程圖。最初,該制造條件設定支援裝置1000的電力變成0N,開始一系列的工作。這樣,首先,坩堝特定信息取得部104通過互聯網150以及區域內LAN118取得使用者通過使用者末端152輸入的氧化硅玻璃坩堝的型式、制造批、序列號等能夠將氧化硅玻璃坩堝個別地特定的信息(S102)。這樣,測定數據取得部102通過區域內LAN118取得在外部的服務器126中存儲的氧化硅玻璃坩堝的三維形狀的測定數據(S104)。
[0155]另一方面,追加信息取得部104通過互聯網150以及區域內LAN118取得使用者通過使用者末端152輸入的結晶硅原料、提拉裝置的直徑、被施加的磁場的強度、提拉的硅單晶的尺寸、提拉的硅單晶的長度、加熱方式、氣氛氣體的種類、氣氛氣體的減壓度、連續提拉條件、追加原料加料條件以及保存條件等追加信息(S106)。
[0156]之后,模擬部112使用能夠進行選自由傳熱計算、流體計算以及結構計算構成的組中的一種以上的計算的計算引擎,關于使用上述如測定數據所示的三維形狀的氧化硅玻璃坩堝進行硅單晶的提拉時的結晶缺陷的發生得到模擬數據(S108)。
[0157]而且,提拉條件設定部114設定上述模擬部112使用的包括加熱溫度、提拉速度以及轉速的提拉條件,判定基于最初的提拉條件得到的模擬數據的結晶缺陷的發生率是否超過規定的水平(SllO)。其結果,提拉條件設定部114,在結晶缺陷的發生率超過規定的水平的情況下,設定結晶缺陷的發生率達到規定的水平以下的改善提拉條件(S112)。另一方面,提拉條件設定部114在結晶缺陷的發生率為規定的水平以下的情況下,直接使用該提拉條件。
[0158]而且,輸出部116將氧化硅玻璃坩堝的三維形狀的測定數據或者硅單晶的提拉條件通過區域內LAN118以及互聯網150向使用者末端152輸出(S114)。這樣一系列的工作結束。
[0159]<氧化硅玻璃坩堝的三維形狀測定裝置>
圖疒圖10是用于對用于取得上述實施方式中使用的氧化硅玻璃坩堝的三維形狀的測定數據的氧化硅玻璃坩堝的三維形狀測定方法進行說明的圖。需要說明的是,關于該氧化硅玻璃坩堝的三維形狀測定方法,由于與實施方式I相同,因此,在此不再進行說明。
【權利要求】
1.一種支援氧化硅玻璃坩堝的制造條件的設定的裝置,其包括:一設計數據取得部,取得任意的型式、制造批或者序列號的氧化硅玻璃坩堝的三維形狀的設計數據;一制造條件數據設定部,基于所述設計數據設定氧化硅玻璃坩堝的制造條件數據;一模擬部,使用能夠進行選自由傳熱計算、流體計算以及結構計算構成的組中的一種以上的計算的計算引擎、得到通過所述制造條件得到的氧化硅玻璃坩堝的三維形狀的模擬數據;一物性參數設定部,設定所述計算引擎使用的物性參數;一測定數據取得部,取得基于所述制造條件制造的氧化硅玻璃坩堝的三維形狀的測定數據;一匹配度判定部,在所述設計數據、所述模擬數據、所述測定數據中將2種數據進行比較對照、判定兩者的三維形狀的匹配度;以及一輸出部,輸出所述模擬數據或者制造條件數據,其中,所述物性參數設定部具有改善物性參數設定部,該改善物性參數設定部在基于最初的物性參數得到的所述模擬數據以及所述測定數據的三維形狀的匹配度低于規定的水平的情況下,設定所述匹配度達到規定的水平以上的改善物性參數,所述制造條件設定部具有改善制造條件數據設定部,該改善制造條件數據設定部設定得到與所述設計數據的匹配度達到規定的水平以上的模擬數據的制造條件。
2.如權利要求1所述的裝置,其中,所述模擬部以通過使用所述計算引擎可進行應力分析或熱流體分析的方式構成。
3.如權利要求1所述的裝置,其中,所述設計數據、所述模擬數據、所述測定數據均包括與所述氧化硅玻璃坩堝的三維形狀相關的特性值的數據,所述匹配度判定部以判定所述兩者的特性值的匹配度的方式構成,所述改善物性參數設定部,在基于最初的物性參數得到的所述模擬數據以及所述測定數據的三維形狀或者特性值的匹配度中的任意一種低于規定的水平的情況下,以設定三維形狀以及特性值的匹配度均達到規定的水平以上的改善物性參數的方式構成,所述改善制造條件數據設定部,以設定得到與所述設計數據的三維形狀以及特性值的匹配度達到規定的水平以上的模擬數據的制造條件的方式構成。
4.如權利要求3所述的裝置,其中,所述特性值為選自氣泡含有率、表面粗糙度、紅外吸收光譜以及拉曼光譜的一種以上的特性值。
5.一種模擬數據,其通過權利要求1所述的裝置得到。
6.一種改善制造條件數據,其通過權利要求1所述的裝置得到。
7.一種支援制造氧化硅玻璃坩堝用模具的制造條件的設定的裝置,其包括:一坩堝設計數據取得部,取得任意的型式、制造批或者序列號的氧化硅玻璃坩堝的三維形狀的設計數據;一模具數據設定部,基于所述坩堝設計數據設定模具的三維形狀的設計數據;一模擬部,使用能夠進行選自由傳熱計算、流體計算以及結構計算構成的組中的一種以上的計算的計算引擎、得到在如所述模具設計數據所示的三維形狀的模具上將氧化硅粉末進行電弧熔融而得到的氧化硅玻璃坩堝的三維形狀的模擬數據;一參數設定部,設定所述計算引擎使用的物性參數;一坩堝測定數據取得部,取得在基于所述模具設計數據制造的模具上將氧化硅粉末進行電弧熔融而得到的氧化硅玻璃坩堝的三維形狀的坩堝測定數據;一匹配度判定部,在所述坩堝設計數據、所述模擬數據、所述坩堝測定數據中將2種數據進行比較對照、判定兩者的三維形狀的匹配度;以及一輸出部,輸出所述模擬數據或者模具設計數據,其中,所述物性參數設定部具有改善物性參數設定部,該改善物性參數設定部在基于最初的物性參數得到的 所述模擬數據以及所述坩堝測定數據的三維形狀的匹配度低于規定的水平的情況下,設定所述匹配度達到規定的水平以上的改善物性參數,所述模具設計數據設定部具有改善模具設計數據設定部,該改善模具設計數據設定部設定得到所述坩堝與設計數據的匹配度達到規定的水平以上的模擬數據的改善模具設計數據。
8.如權利要求7所述的裝置,其中,所述模擬部以通過使用所述計算引擎可進行應力分析或熱流體分析的方式構成。
9.如權利要求7所述的裝置,其中,所述坩堝設計數據、所述模擬數據、所述坩堝測定數據均包括與所述氧化硅玻璃坩堝的三維形狀相關的特性值的數據,所述匹配度判定部以判定所述兩者的特性值的匹配度的方式構成,所述改善物性參數設定部,在基于最初的物性參數得到的所述模擬數據以及所述坩堝測定數據的三維形狀或者特性值的匹配度中的任意一種低于規定的水平的情況下,以設定三維形狀以及特性值的匹配度均達到規定的水平以上的改善參數的方式構成,所述改善模具設計數據設定部,在使用所述改善參數的情況下,以設定得到與所述坩堝設計數據的三維形狀以及特性值的匹配度達到規定的水平以上的模擬數據的改善模具設計數據的方式構成。
10.如權利要求9所述的裝置,其中,所述特性值為選自氣泡含有率、表面粗糙度、紅外吸收光譜以及拉曼光譜的一種以上的特性值。
11.一種模擬數據,其通過權利要求7所述的裝置得到。
12.—種改善制造條件數據,其通過權利要求7所述的裝置得到。
13.一種支援使用氧化硅玻璃坩堝的硅單晶提拉的條件設定的裝置,其包括:一坩堝特定信息取得部,取得由使用者輸入的能夠將氧化硅玻璃坩堝個別地特定的坩堝特定信息;一測定數據取得部,取得通過所述坩堝特定信息個別地特定的氧化硅玻璃坩堝的三維形狀的測定數據;一模擬部,使用能夠進行選自由傳熱計算、流體計算以及結構計算構成的組中的一種以上的計算的計算引擎,關于使用如所述測定數據所示的三維形狀的氧化硅玻璃坩堝進行硅單晶的提拉時的結晶缺陷的發生得到模擬數據;一提拉條件設定部,設定所述模擬部使用的包括加熱溫度、提拉速度以及轉速的提拉條件,在基于最初的提拉條件得到的所述模擬數據的結晶缺陷的發生率超過規定的水平的情況下,設定所述結晶缺陷的發生率達到規定的水平以下的改善提拉條件;以及一輸出部,輸出所述提拉條件。
14.如權利要求13所述的裝置,其中,所述模擬部使用所述計算引擎、能夠進行應力分析或熱流體分析地構成。
15.如權利要求1所述的裝置,其中,所述測定數據包括與所述氧化硅玻璃坩堝的三維形狀相關的特性值的數據,所述模擬部以關于使用具有如所述測定數據所示的三維形狀以及特性值的氧化硅玻璃坩堝進行硅單晶的提拉時的結晶缺陷的發生得到模擬數據的方式構成。
16.如權利要求15所述的裝置,其中,所述特性值為選自氣泡含有率、表面粗糙度、紅外吸收光譜以及拉曼光譜的一種以上的特性值。
17.如權利要求13所述的裝置,其中,所述測定數據包括所述氧化硅玻璃坩堝的彎曲部的凹凸的數據,所述提拉條件包括在所述彎曲部附近的提拉速度、加熱溫度以及轉速的時間表。
18.如權利要求13所述的裝置,還包括:一追加信息取得部,取得由使用者輸入的選自由多晶硅原料、提拉裝置的直徑、被施加的磁場的強度、提拉的硅單晶的尺寸、提拉的硅單晶的長度、加熱方式、氣氛氣體的種類、氣氛氣體的減壓度、連續提拉條件、追加原料加料條件以及保存條件構成的組中的一種以上的追加信息。
19.如權利要求13所述的裝置,其中,所述輸出部以進一步輸出所述測定數據的方式構成。
20.一 種支援使用氧化硅玻璃坩堝的硅單晶提拉的條件設定的裝置,其包括:一坩堝特定信息取得部,取得由使用者輸入的能夠將氧化硅玻璃坩堝個別地特定的坩堝特定信息;一測定數據取得部,取得通過所述坩堝特定信息個別地特定的氧化硅玻璃坩堝的三維形狀的測定數據;以及一輸出部,輸出所述測定數據。
【文檔編號】C30B29/06GK104136665SQ201280065352
【公開日】2014年11月5日 申請日期:2012年10月31日 優先權日:2011年12月31日
【發明者】須藤俊明, 佐藤忠廣, 北原江梨子, 飛田修司, 鈴木光一 申請人:株式會社Sumco