專利名稱:一種目標可滿足性定性、定量表示及推理方法
技術領域:
本發明涉及軟件系統工程環境下,基于目標模型表示和目標推理領域,具體地,
可表達為一種基于云模型的目標可滿足性表示模型和一種基于0WA算子的目標可滿
足性推理方法。
背景技術:
面向目標需求工程(Goa卜0riented Requirements Engineering: G0RE)是需求工程的重要研究分支,目標是標識、組織和驗證軟件需求的一種邏輯機制,目標由商業、組織或系統的高層目的(Objectives)組成,捕獲軟件系統被構建的原因,并對不同層次的設計決策進行指導.面向目標的需求建模,從高層抽象目標開始,根據目標間縱向And、 0r分解關系,對抽象目標進行逐層精化,直到較低抽象層次的葉子目標,葉子目標可作為軟件職責分配給不同Agent并實現.在分解關系的基礎上同時可以增加橫向二元關系Satisfy和Deny,分別用于表達目標間的正向、負向影響關系.根據目標關系,給定葉子目標可滿足性初始值,依據自下而上的可滿足性推理方法,可推導得出高層目標的滿足程度.需求工程師和軟件工程師根據目標的可滿足性,檢測需求模型的潛在沖突,并對可選的軟件設計方案進行權衡,完成軟件系統的各項設計決策.
可滿足性表示是設計可滿足性推理方法的重要前提,可滿足性可表示為連續數域區間的定量數值,或一組定性級別.定量表示能滿足表示精度的要求,卻引入了主觀認知的含糊性.例如,0. 65的本質含義是什么?目標被滿足的程度是高還是低?概念的語義通常很難用簡單的數值進行表述.對于一組葉子目標的滿足程度而言,很難統一地由定性概念或定量數值進行表示.例如,部分葉子目標可滿足性無法精確計算得出,而常常依據用戶或領域專家的主觀經驗和分析結果,以諸如"一般滿足"、"非常滿足,,等語言值的方式進行表達.定性表示能區分不同級別的可滿足性間的語義差異,易于在概念和認知層次理解目標被滿足的程度.然而,定性表示卻帶來表示精度的損失,不能對可滿足性進行細粒度地比較,也不利于量化分析方法的應用.目標模型作為需求分析、協商,及軟件設計、實現決策的重要載體,軟件涉眾往往希望能以不同的粒度對目標的滿足程度進行分析和評價.當前,GORE研究領域中采取相對獨立的定量或定性的可滿足性表示方式,無法同時兼顧定量表示的精確性,及定性表示的語義明確性.
目標可滿足性推理,是根據目標可滿足性表示方式和目標關系的語義,完成不同目標間可滿足性傳遞或合成的過程.已有文獻指出從判定父目標滿足程度的充分條件的角度,對And、 Or分解關系的語義進行解釋,And分解關系中,所有子目標的滿足是判斷父目標滿足的充分條件;對于Or關系,任一子目標的滿足均可作為評判父目標滿足程度的充分條件.這種解釋并未明確給出分解關系下實現可滿足性推理的 一般性原則,導致的結果便是不同研究者根據各自對目標關系語義的理解,設計出不同的推理方法.例如使用純邏輯"與"、"或"操作完成定性推理,僅關注子目標可滿足性最小或最大值對父目標的影響.這種方法沒有考慮子目標間的"補償"或"抑制"作用,例如,目標g被And分解為一組子目標gl,…,gn,且除gl為"一般滿足"夕卜,其他子目標均為"完全滿足".此時,g的滿足程度不應僅由gl單獨決定,適當地考慮其它子目標對g的滿足程度的"補償"作用,才能做出合理、全面地判斷.再比如采用概率意義下的"與"、"或"操作完成定量推理,父目標的滿足程度由所有子目標的滿足概率共同決定.然而,基于概率的推理方法,父目標的滿足程度可能遠小于或大于子目標可滿足性的最小或最大值.事實上,作為具有主觀判斷能力的軟件涉眾,并非以純邏輯或基于概率"與"、"或"的思維方式,認知父目標可滿足性的推理結果. 一般而言,適當考慮子目標間"補償"或"抑制"作用,使得父目標的滿足程度介于子目標可滿足性的最小和最大值之間,更符合人類一般思維方式的特點。
因此,針對上述出現的種種缺陷,需要一種更加合理的目標可滿足性表示模型和基于該模型的目標可滿足性推理方法,能夠定性定量地表示目標模型的可滿足性,并且基于該表示模型進行的推理過程,能夠使得推理的結果更好地反映用戶的認知思維。
發明內容
針對上述目標可滿足性表示和推理方法中存在的局限,本發明設計一種基于云模型的目標可滿足性表示模型,完成定性、定量相結合的目標可滿足性統一表示。在該模型的基礎上,提出一種基于OWA算子核心思想的可滿足性推理方法。該方法同時考慮子目標間"補償,,和"抑制"作用對父目標滿足程度的影響,推理結果能夠較好反映人的主觀思維的特點。
本發明具體方法如下步驟一
賦予目標可滿足性表示模型的定性級別。步驟二賦予葉子節點的可滿足性值。步驟三
定義基于云模型的目標可滿足性表示模型,并基于該模型對目標圖中的葉子目標進行預處理,使得每個葉子節點同時具有定性和定量的可滿足性值。步驟四
遍歷尋找未進行推理的父節點,若存在,進入步驟五;若不存在,進入步驟七。步驟五
基于0WA算法的核心思想定義推理方法中的AND算子、0R算子,對局部分解上下文中父目標滿足程度進行推理,形成父目標可滿足性的一個證據源。步驟六
定義推理方法中的橫向關系算子(ENV),合成證據上下文中目標可滿足性的不同證據源。步驟七
基于步驟二中定義的目標可滿足性表示模型處理父目標節點,使得所有的父目標節點也同時具有定性和定量的可滿足性值。步驟八
完成推理過程,并完整顯示目標結構圖。步驟九
目標可滿足性表示及其推理過程結束。
圖1:原型系統結構示意圖
圖2:目標可滿足性推理流程圖
具體實施例方式
為便于本領域一般技術人員理解和實施本發明,現結合附圖描述本發明的實施例。
如圖1所示,為實施本發明中所述方法的原型系統結構示意圖,由至少一個用戶輸入裝置l,至少一個目標模型可滿足性表示及推理中心2,及至少一個目標結構圖顯示裝置3組成。用戶輸入裝置1實現的功能是對目標可滿足性表示模型賦予定性級別及對葉子目標節點的可滿足性賦值,賦值不僅僅局限于定量數值,也可以定性級別的定性值。用戶輸入裝置1可以與目標可滿足性表示模型表示及推理中心2中的目標可滿足性定性、定量轉換裝置201進行交流,將葉子節點的可滿足性值交與定性、定量轉換裝置進行處理,目的是在推理進行之前所有葉子節點的可滿足性值同時具有定性、定量值,定量值利于推理過程的進行,定性值利于用戶總體的認知。裝置201與可滿足性推理運算裝置202進行數據傳輸,在202裝置中完成所有父目標的推理運算過程;同時裝置202再次與目標可滿足性定性、定量轉換裝置201傳輸推理數據,經過裝置201的處理,父節點也同時擁有定性、定量的可滿足性值,最后將所有節點的可滿足性值(定性值、定量值)交與目標結構圖顯示裝置3,清晰地顯示出目標結構圖,在結構圖中包含各個節點彼此之間的關系和各自定性定量的可滿足性值。
如圖2所示,為實施本發明中所述方法的目標表示及推理流程圖,現結合圖1所示原型系統結構示意圖,具體實施步驟詳細描述如下步驟一
用戶通過用戶輸入裝置1賦予目標可滿足性表示模型的定性級別,定性級別包括對于目標模型設定的定性概念個數,以及每個定性概念對應的云的三個數字特征Ex、 En、He,其本質就是利用云模型將定性概念與一組定量數值聯系在一起,在需要的時候可以進行互相轉換。
步驟二
用戶通過輸入裝置1賦予葉子節點的可滿足性值,用戶可以根據自己的偏好,既可以賦予定量的可滿足性數值,如O. 5、 0. 8等,也可以賦予定性的可滿足性值,例如一般滿足、非常滿足等,但賦予定性值時要限制在步驟一中賦予的定性級別范圍內,不能憑空臆造定性值。若葉子節點可滿足性數值為定量的,則可直接用于推理過程;若為定性的,則可利用步驟三中的目標可滿足性定性、定量轉換裝置將定性值轉換為定量值,再進行推理的過程。
步驟三
在目標可滿足性定性、定量轉換裝置201中對步驟二賦予的葉子節點可滿足性值進行預處理,使得葉子節點既包含定量的數值,也具有定性的可滿足性值。定量的數值用來后續的推理運算過程;定性值可以讓用戶對目標節點有一個宏觀的認識,這是由于人思維的主觀性,數值O. 5跟一般滿足,用戶會更偏愛一般滿足這種表達方式。具體目標可滿足性表示模型的定義及其預處理過程如下
基于云的目標可滿足性模型CSat=<L, X, ju , CFLX, CFXL>.其中,L為由云的數字特征表征的定性級別,X為L所對應子論域貝c U內任一可滿足性定量值,p為X隸屬于L的 確定度.CFLX:Lx p —X,CFXL:X —Lx m是L和X間的映射函數,用于實現二者間的相互轉換.
預處理過程為處理葉子節點的可滿足性值,使得葉子節點具有定量的可滿足 性數值,可以進行推理運算過程;同時也具有定性概念級別的可滿足性值,有利于 總體上對葉子節點的認知。
基于云模型的CSat模型能夠兼顧可滿足性的語義明確性和精確性,能夠把認知的模 糊性和隨機性集成在一起,較好實現可滿足性定性、定量統一表示,為可滿足性推理提供 合理的語義基礎和精度表示. 步驟四
遍歷目標結構圖尋找是否存在未進行推理的父節點,若存在,進入步驟五,若不存 在,進入步驟七。 步驟五
利用推理算法中AND算子、0R算子,在裝置202中對未推理的父節點進行局部分解 上下文的推理。若父節點分解關系對應的是AND關系,則使用AND算子;若父節點分解 關系對應的是0R關系,則使用OR算子;最終得到父目標局部上下文關系可滿足性的 一個證據源。
具體基于0WA的AND、 0R算子運算過程如下
給定一組實數A-(a!,…,aj應用0WA算子的一般步驟如下
步驟l:對(a!,…,aj重新排序,生成新的實數集合B=(b,,…,bj
步驟2:根據集合(bi,…,W,生成權重集合W—w,, ...,wn)
步驟3:計算F(b,, ...,bn)=WTxB的聚合結果,其中WT為W的轉置
AND算子、0R算子具體定義的公式如下
尸"(g,,g2,…,g") = t W,xg,且(肌e [O,l])
F。,(g,,g2,…,g") = t W,Xg,,i(W,^
)
為了統一表述和分析F^和F。r算子,本發明采用從小到大的方式對(a!,…,aj重新排 序,即對于任意bi、 b) £ B,當滿足i<j時,必有bi《bj。 0WA算子通過對權重參數的調整, 控制對集合(b!,…,bn)進行聚合的"與"、"或"程度,當Wl《w2《…《Wn時,orness(W) > 0. 5;當w一w,…》w。時,andness (W) > 0. 5。可見,當為較大數值賦予較大權重時,0WA算子成 為or-like算子;當為較小數值賦予較大權重時,0WA算子成為and-like算子。因此,給 定And〈g, {gl,…,gj〉或0r<g, {gi,…,g。)〉,F^和F。r算子權值確定方法下給定一組目 標可滿足性fe,…,xj,其中Xi6
,且對于任意i和j,滿足i<j時,Xi《Xj。此時,對 于任一 Xi,存在函數f (Xi) > 0,且Wi由如下公式確定
"'一 s ;"/",)
根據0WA確定and-like和or-like算子的上述原則,及And、 Or分解關系的語義解 釋,F^和F。r算子的f (Xi)函數如下公式所示
<formula>formula see original document page 9</formula>
上述兩公式中的入用于調節F^和F。r算子對定量推理結果的區分精度。對于Fand算
子,And局部上下文中,所有子目標的滿足是判斷父目標滿足的充分條件。因此,當x產0時, 父目標滿足的充分條件不成立,W^w產l,w產0…,w^0]。此時,F^算子為純邏輯"與",且 父目標可滿足性等于0。當x,O時,f^(Xi)是Xi的減函數,即Xi越小則其權重越大,與OWA 的and-like原則保持一致。與之類似,Or局部上下文中,任一子目標的滿足均可作為評 判父目標滿足的充分條件。根據OWA的or-like原則,f。r (xj是Xi的增函數,即Xi越大則 其權重越大。 步驟六
利用推理算法中的ENV算子合成證據上下文中目標可滿足性的不同證據源。例如高 層目標既存在縱向的分解關系,又存在橫向的促進或者反促進關系,對于不同的證據來 源需要進行合成的操作,本發明采用的是普通加權的方式,由用戶根據自己的喜好,來 對局部分解上下文的證據源和橫向關系的證據源賦予不同的權值,裝置202中存在一個 用戶根據偏好輸入不同權值的模塊來完成此功能,在進行合成操作之前會提示用戶進行 權值的輸入,最后采用加權的方式合成證據上下文中不同的證據源。
具體ENV算子公式為
<formula>formula see original document page 9</formula>且<formula>formula see original document page 9</formula>
步驟七可滿足性推理運算裝置202將推理結束得到的目標節點定量可滿足性數據傳入到另 外一個目標可滿足性定性、定量轉換裝置201中進行處理,使得父節點也同時包含定量 和定性的數值,利于用戶對父節點可滿足性有直觀整體的認知。 步驟八
由目標結構圖顯示裝置3將包含父節點、子節點及其彼此關系的目標關系圖完整顯 示,圖中每個節點都應該包含定量和定性的可滿足性值,例如節點A定量值為0.5, 定性值為 一般滿足。使得用戶對目標結構圖有一個整體的把握。 步驟九
目標表示及其推理過程結束。
本發明在已有研究成果的基礎上,從以人為主體的軟件涉眾的角度出發,借鑒不確定 性人工智能領域已有研究成果,設計滿足人對可滿足性的認知要求,及符合人類一般思維 方式特點的可滿足性表示和推理方法.首先,本發明基于可滿足性定性、定量表示的優勢 和局限,提出 一種基于云模型的目標可滿足性表示模型,該模型將定性、定量表示視為統 一的整體,能夠在保持語義理解能力的同時,還提供對可滿足性進行細粒度區分的能力。 其次,提出一種基于0WA算子核心思想的推理方法,該方法避免基于純邏輯"與"、"或" 的過于"偏執"的推理結果;同時,父目標滿足程度,介于子目標可滿足性的最小和最大值 之間,較好地反應人類 一般思維的特點。
因此,基于云的目標可滿足性模型(目標模型的五元組表示,定性級別的賦予,定性、 定量值轉換方法等),基于0WA的目標推理方法(AND、 0R、 ENV算子設計及實現算法等) 都屬本發明權利要求的保護范圍。
權利要求
1.一種應用于軟件系統工程環境下的基于云模型的目標可滿足性表示模型和基于OWA算子的目標可滿足性推理方法,其特征在于(1)基于云模型定義目標可滿足性表示模型,使用一個五元組來表示目標,使得目標同時擁有定性和定量的可滿足性值;(2)基于OWA算子定義目標推理過程中局部分解上下文的AND算子、OR算子,通過這兩種算子得到父目標分解上下文可滿足性的證據源;(3)使用賦予權重的方式來反映用戶對于目標不同的偏好,利用推理方法中的ENV算子來合成證據上下文中目標可滿足性的不同證據源;(4)推理結束過程后顯示完整的目標結構圖,每個目標都包含定性和定量的可滿足性值,使得用戶對目標有更為直觀的認知。
2. 根據權利要求1所述的一種應用于軟件系統工程環境下的基于云模型的目標可滿 足性表示模型和基于OWA算子的目標可滿足性推理方法,其特征在于(1)中目標可滿 足性表示模型的五元組CSat=<L,X, u ,CFLX, CFXL〉, L為由云的數字特征表征的定性 級別,X為L所對應子論域UlCU內任一可滿足性定量值,p為X隸屬于L的確定 度.CFLX:Lx y —X, CFXL:X —Lx M是L和X間的映射函數,用于實現二者間的相互轉換。
3. 根據權利要求1所述的一種應用于軟件系統工程環境下的基于云的目標可滿足性 表示模型和基于OWA算子的目標可滿足性推理方法,其特征在于(l)進一步包括定 性級別的賦予及其每個定性概念對應云的特征向量〈Ex, En, He>,以及利用前件云、后件 云等云算法進行的定向定量轉換的函數CFLX, CFXL等。
4. 根據權利要求1所述的一種應用于軟件系統工程環境下的基于云模型的目標可滿 足性表示模型和基于OWA算子的目標可滿足性推理方法,其特征在于(l)中利用定義 的目標可滿足性表示模型對目標進行的處理,使得目標同時擁有定性、定量的可滿足性 值。
5. 根據權利要求1所述的一種應用于軟件系統工程環境下的基于云模型的目標可滿 足性表示模型和基于OWA算子的目標可滿足性推理方法,其特征在于(2)進一步包括 AND算子、OR算子的設計,算子使用時通過調節因子來區分推理結果的精度等。
6. 根據權利要求1所述的一種應用于軟件系統工程環境下的基于云模型的目標可滿 足性表示模型和基于OWA算子的目標可滿足性推理方法,其特征在于(3)進一步包括 證據上下文合成的設計,即通過用戶賦予權重來反映不同的偏好;ENV算子的設計等。
7. 根據權利要求1所述的一種應用于軟件系統工程環境下的基于云模型的目標可滿 足性表示模型和基于OWA算子的目標可滿足性推理方法,其特征在于(4)進一步包括目標結構圖的完整顯示方式,顯示目標及其彼此關系的同時,同時顯示每個目標定 性、定量的可滿足性值,由此用戶對于目標可以有更直觀的認知。
全文摘要
一種應用于軟件系統工程環境下,涉及目標模型表示和目標推理領域,基于云模型理論的目標可滿足性表示模型和基于OWA算子的目標可滿足性推理方法,主要用于解決目標可滿足性定性定量的綜合表示問題和目標可滿足性推理及其推理結果合理性問題。技術要點如下(1)基于云模型定義目標可滿足性表示模型,使用一個五元組來表示目標,使得目標同時擁有定性和定量的可滿足性值;(2)基于OWA算子定義目標推理過程中局部分解上下文的AND算子、OR算子,通過這兩種算子得到父目標分解上下文可滿足性的證據源;(3)使用賦予權重的方式來反映用戶對于目標不同的偏好,利用推理方法中的ENV算子來合成證據上下文中目標可滿足性的不同證據源;(4)推理結束過程后顯示完整的目標結構圖,每個目標都包含定性和定量的可滿足性值,使得用戶對目標有更為直觀的認知。本發明優勢在于目標可滿足性表示模型,能夠在保持語義理解能力的同時,提供對可滿足性進行細粒度區分的能力;推理方法能夠避免基于純邏輯“與”、“或”的過于“偏執”的推理結果;同時,父目標的滿足程度介于子目標可滿足性的最小和最大值之間,較好地反應人類一般思維的特點。
文檔編號G06F9/44GK101593109SQ20091008799
公開日2009年12月2日 申請日期2009年7月6日 優先權日2009年7月6日
發明者莉 張, 帥 王, 王守信 申請人:北京航空航天大學